Suppr超能文献

使用散度测度对脑不对称性进行定量分析:正常与病理性脑的鉴别。

Quantitative analysis of brain asymmetry by using the divergence measure: normal-pathological brain discrimination.

作者信息

Volkau Ihar, Prakash Bhanu, Ananthasubramaniam Anand, Gupta Varsha, Aziz Aamer, Nowinski Wieslaw L

机构信息

Agency for Science, Technology and Research (A*STAR), Biomedical Imaging Lab, Matrix, Singapore.

出版信息

Acad Radiol. 2006 Jun;13(6):752-8. doi: 10.1016/j.acra.2006.01.043.

Abstract

RATIONALE AND OBJECTIVES

The human brain demonstrates approximate bilateral symmetry of anatomy, function, neurochemical activity, and electrophysiology. This symmetry reflected in radiological images may be affected by pathology. Hence quantitative analysis of brain symmetry may enable the normal and pathological brain discrimination. We propose a method based on the Jeffreys divergence measure (J-divergence), which attempts to quantify "approximate symmetry" and also aids to classify the brain as bilaterally symmetrical/asymmetrical (normal/abnormal).

MATERIALS AND METHODS

The dataset included studies of 101 patients (59 without detectable pathologies and 42 with different abnormalities). First, the midsagittal plane is computed for the volume data that divides the head into two hemispheres. The J-divergence is calculated from the density functions of intensities of both the hemispheres. Statistical analysis was conducted to find the best distribution for normal/abnormal datasets.

RESULTS

Statistical tests showed that the lognormal distribution best characterizes the values of the J-divergence for both normal and abnormal cases, and the threshold value for the Jeffreys divergence measure to classify the brains with and without detectable pathologies is T = 0.007. The threshold value had a sensitivity of 88.1% and specificity of 90.9%.

CONCLUSION

The proposed method is fast and simple to compute. The high sensitivity and specificity indicate the results are encouraging. This method can be used for the initial analysis of data, detection of pathology, classification of dataset as presumably normal/abnormal, and localization of abnormality.

摘要

原理与目的

人类大脑在解剖结构、功能、神经化学活动和电生理方面表现出近似的双侧对称性。这种反映在放射图像中的对称性可能会受到病理状况的影响。因此,对脑对称性进行定量分析可能有助于区分正常脑和病理脑。我们提出一种基于杰弗里斯散度测度(J散度)的方法,该方法试图量化“近似对称性”,并有助于将大脑分类为双侧对称/不对称(正常/异常)。

材料与方法

数据集包括对101例患者的研究(59例无可检测到的病理状况,42例有不同异常)。首先,为将头部划分为两个半球的体积数据计算正中矢状面。J散度是根据两个半球强度的密度函数计算得出的。进行统计分析以找到正常/异常数据集的最佳分布。

结果

统计检验表明,对数正态分布最能表征正常和异常情况下J散度的值,用于区分有无可检测到病理状况的大脑的杰弗里斯散度测度阈值为T = 0.007。该阈值的灵敏度为88.1%,特异性为90.9%。

结论

所提出的方法计算快速且简单。高灵敏度和特异性表明结果令人鼓舞。该方法可用于数据的初步分析、病理检测、将数据集分类为可能正常/异常以及异常定位。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验