Suppr超能文献

Pentoxifylline improves reoxygenation-induced contractile recovery through a nitric oxide-dependent mechanism in rat papillary muscles.

作者信息

Ebrahimi Farzad, Hajrasouliha Amir Reza, Tavakoli Sina, Sadeghipour Hamed, Ghasemi Mehdi, Rofoui Bahareh Rahimzadeh, Ahmadi Seyed Hossein, Dehpour Ahmad Reza

机构信息

Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

J Cardiovasc Pharmacol. 2006 Apr;47(4):571-7. doi: 10.1097/01.fjc.0000211733.53798.d3.

Abstract

In this study, the protective effect of pentoxifylline against hypoxia-reoxygenation injury and the possible involvement of nitric oxide (NO)-mediated pathways in this protection were investigated in isolated rat papillary muscles. Papillary muscles were excised and isolated in Krebs-Henseleit solution aerated with 95% O2 and 5% CO2. Hypoxia was simulated by substituting O2 with argon. Three sets of experiments, testing 30, 60, and 90 min of hypoxia, were performed. The effects of different pentoxifylline concentrations on papillary muscle contractile parameters and responsiveness to isoproterenol were assessed. To investigate the role of NO, N(omega)-nitro-L-arginine methyl ester was added before pentoxifylline treatment. Pentoxifylline did not show any inotropic effect on papillary muscles. Hypoxia caused a profound depression of contractile parameters, which was not affected by pentoxifylline treatment. Reoxygenation resulted in significant partial recovery of contractile parameters after 30 and 60 but not 90 min of hypoxia. In experiments with 30 and 60 min of hypoxia, reoxygenation-induced contractile recovery and responsiveness to isoproterenol were improved by pentoxifylline in a concentration-dependent fashion. These functional improvements were completely blocked by N(omega)-nitro-L-arginine methyl ester pretreatment. No improvement was observed in 90-min hypoxia experiment. In conclusion, pentoxifylline improved contractile recovery during reoxygenation and postreoxygenation responsiveness to beta-adrenergic stimulation through the NO-dependent mechanism.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验