Suppr超能文献

Loss of function polymorphisms in NAT1 protect against spina bifida.

作者信息

Jensen Liselotte E, Hoess Karen, Mitchell Laura E, Whitehead Alexander S

机构信息

Department of Pharmacology and Center for Pharmacogenetics, University of Pennsylvania School of Medicine, 153 Johnson Pavilion, 3620 Hamilton Walk, Philadelphia, PA 19104, USA.

出版信息

Hum Genet. 2006 Aug;120(1):52-7. doi: 10.1007/s00439-006-0181-6. Epub 2006 May 6.

Abstract

Periconceptional folic acid supplementation reduces the risk of having a child with spina bifida. N-acetyltransferase 1 (NAT1) participates in the catabolism of folates and the acetylation of aromatic and heterocyclic amines. Hence, functional polymorphisms in NAT1, the gene encoding NAT1, could influence the risk of spina bifida via either folate catabolism or acetylation of exogenous agents. Individuals with spina bifida and their parents were genotyped for six NAT1 single nucleotide polymorphisms (SNPs) for which the less common allele is associated with reduced or absent enzyme activity (i.e. 97C>T, 190C>T, 559C>T/560G>A, 640T>G and 752A>T). In addition, a "composite" NAT1 genotype was defined as a function of the genotyped SNPs. Descriptive analyses of the SNPs and of the composite genotype indicated that heterozygous parents were more likely to transmit the common allele than the rare allele to their affected offspring. Furthermore, matings of mothers homozygous for the common allele and heterozygous fathers were more common than the reciprocal matings. Log-linear analyses confirmed that both the maternal (P = 0.008) and offspring (P = 0.003) composite NAT1 genotypes were significantly related to the risk of spina bifida. NAT1 variants that reduce or abolish enzyme activity appear to protect against spina bifida, and to exert their influence via both the maternal and the offspring genotypes. These associations may be attributable to a decrease in either folate catabolism or the conversion of exogenous agents to teratogenic derivatives in women and/or developing embryos with a NAT1 genotype that includes a loss of function allele relative to those who do not.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验