Suppr超能文献

真菌病原体中核心代谢途径的生态位特异性调控

Niche-specific regulation of central metabolic pathways in a fungal pathogen.

作者信息

Barelle Caroline J, Priest Claire L, Maccallum Donna M, Gow Neil A R, Odds Frank C, Brown Alistair J P

机构信息

School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.

出版信息

Cell Microbiol. 2006 Jun;8(6):961-71. doi: 10.1111/j.1462-5822.2005.00676.x.

Abstract

To establish an infection, the pathogen Candida albicans must assimilate carbon and grow in its mammalian host. This fungus assimilates six-carbon compounds via the glycolytic pathway, and two-carbon compounds via the glyoxylate cycle and gluconeogenesis. We address a paradox regarding the roles of these central metabolic pathways in C. albicans pathogenesis: the glyoxylate cycle is apparently required for virulence although glyoxylate cycle genes are repressed by glucose at concentrations present in the bloodstream. Using GFP fusions, we confirm that glyoxylate cycle and gluconeogenic genes in C. albicans are repressed by physiologically relevant concentrations of glucose, and show that these genes are inactive in the majority of fungal cells infecting the mouse kidney. However, these pathways are induced following phagocytosis by macrophages or neutrophils. In contrast, glycolytic genes are not induced following phagocytosis and are expressed in infected kidney. Mutations in all three pathways attenuate the virulence of this fungus, highlighting the importance of central carbon metabolism for the establishment of C. albicans infections. We conclude that C. albicans displays a metabolic program whereby the glyoxylate cycle and gluconeogenesis are activated early, when the pathogen is phagocytosed by host cells, while the subsequent progression of systemic disease is dependent upon glycolysis.

摘要

为了建立感染,病原体白色念珠菌必须在其哺乳动物宿主中同化碳并生长。这种真菌通过糖酵解途径同化六碳化合物,并通过乙醛酸循环和糖异生作用同化二碳化合物。我们解决了一个关于这些中心代谢途径在白色念珠菌致病机制中作用的悖论:乙醛酸循环显然是致病性所必需的,尽管乙醛酸循环基因在血液中存在的葡萄糖浓度下会被抑制。通过绿色荧光蛋白(GFP)融合,我们证实白色念珠菌中的乙醛酸循环和糖异生基因会被生理相关浓度的葡萄糖所抑制,并表明这些基因在感染小鼠肾脏的大多数真菌细胞中是无活性的。然而,这些途径在被巨噬细胞或中性粒细胞吞噬后会被诱导。相比之下,糖酵解基因在吞噬后不会被诱导,而是在受感染的肾脏中表达。这三种途径中的突变都会减弱这种真菌的毒力,突出了中心碳代谢对于白色念珠菌感染建立的重要性。我们得出结论,白色念珠菌表现出一种代谢程序,即当病原体被宿主细胞吞噬时,乙醛酸循环和糖异生作用会早期被激活,而全身性疾病的后续进展则依赖于糖酵解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17cc/1472618/91aaea8f1c99/cmi008-961-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验