Suppr超能文献

使用一种稳健且高效的方法对动态对比增强图像进行去卷积分析的脑灌注成像。

Cerebral perfusion mapping using a robust and efficient method for deconvolution analysis of dynamic contrast-enhanced images.

作者信息

Koh T S, Tan C K Markus, Cheong L H Dennis, Lim C C Tchoyoson

机构信息

Center for Modeling and Control of Complex Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore.

出版信息

Neuroimage. 2006 Aug 15;32(2):643-53. doi: 10.1016/j.neuroimage.2006.03.042. Epub 2006 May 6.

Abstract

Dynamic contrast-enhanced (DCE) imaging using MRI or CT is emerging as a promising tool for diagnostic imaging of cerebral disorders and the monitoring of tumor response to treatment. In this study, we present a robust and efficient deconvolution method based on a linearized model of the impulse residue function, which allows for the mapping of functional cerebral parameters such as cerebral blood flow, volume, mean transit time, and permeability. Monte Carlo simulation studies were performed to study the accuracy and stability of the proposed method, before applying it to clinical study cases of patients with cerebral tumors imaged using DCE CT. Functional parameter maps generated using the proposed method revealed the locations of the cerebral tumors and were found to be of sufficiently good clarity for marked regional differences in tissue vascularity and permeability to be assessed. In particular, tumor visualization and delineation were found to be better on the parameter maps that were indicative of the breakdown of the blood-brain barrier.

摘要

使用磁共振成像(MRI)或计算机断层扫描(CT)的动态对比增强(DCE)成像正成为一种用于脑部疾病诊断成像和监测肿瘤治疗反应的有前景的工具。在本研究中,我们提出了一种基于脉冲残留函数线性化模型的强大且高效的去卷积方法,该方法可用于绘制诸如脑血流量、血容量、平均通过时间和通透性等功能性脑参数图。在将该方法应用于使用DCE CT成像的脑肿瘤患者的临床研究病例之前,进行了蒙特卡罗模拟研究以考察该方法的准确性和稳定性。使用所提出的方法生成的功能参数图揭示了脑肿瘤的位置,并且发现其清晰度足以评估组织血管性和通透性的明显区域差异。特别是,在指示血脑屏障破坏的参数图上,肿瘤的可视化和轮廓描绘效果更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验