Suppr超能文献

热休克蛋白90(Hsp90)抑制剂抗癌作用的生化原理:格尔德霉素及其类似物的缓慢、紧密结合抑制作用

A biochemical rationale for the anticancer effects of Hsp90 inhibitors: slow, tight binding inhibition by geldanamycin and its analogues.

作者信息

Gooljarsingh Lata T, Fernandes Christine, Yan Kang, Zhang Hong, Grooms Michael, Johanson Kyung, Sinnamon Robert H, Kirkpatrick Robert B, Kerrigan John, Lewis Tia, Arnone Marc, King Alastair J, Lai Zhihong, Copeland Robert A, Tummino Peter J

机构信息

Department of Enzymology and Mechanistic Pharmacology, GlaxoSmithKline, Collegeville, PA 19426, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 May 16;103(20):7625-30. doi: 10.1073/pnas.0602650103. Epub 2006 May 9.

Abstract

Heat shock protein (Hsp)90 is emerging as an important therapeutic target for the treatment of cancer. Two analogues of the Hsp90 inhibitor geldanamycin are currently in clinical trials. Geldanamycin (GA) and its analogues have been reported to bind purified Hsp90 with low micromolar potency, in stark contrast to their low nanomolar antiproliferative activity in cell culture and their potent antitumor activity in animal models. Several models have been proposed to account for the approximately 100-fold-greater potency in cell culture, including that GA analogues bind with greater affinity to a five-protein Hsp90 complex than to Hsp90 alone. We have determined that GA and the fluorescent analogue BODIPY-GA (BDGA) both demonstrate slow, tight binding to purified Hsp90. BDGA, used to characterize the kinetics of ligand-Hsp90 interactions, was found to bind Hsp90alpha with k(off) = 2.5 x 10(-3) min(-1), t(1/2) = 4.6 h, and Ki* = 10 nM. It was found that BDGA binds to a functional multiprotein Hsp90 complex with kinetics and affinity identical to that of Hsp90 alone. Also, BDGA binds to Hsp90 from multiple cell lysates in a time-dependent manner with similar kinetics. Therefore, our results indicate that the high potency of GA in cell culture and in vivo can be accounted for by its time-dependent, tight binding to Hsp90 alone. In the broader context, these studies highlight the essentiality of detailed biochemical characterization of drug-target interactions for the effective translation of in vitro pharmacology to cellular and in vivo efficacy.

摘要

热休克蛋白(Hsp)90正逐渐成为癌症治疗的重要靶点。目前,Hsp90抑制剂格尔德霉素的两种类似物正处于临床试验阶段。据报道,格尔德霉素(GA)及其类似物与纯化的Hsp90结合时的亲和力为低微摩尔级别,这与其在细胞培养中表现出的低纳摩尔抗增殖活性以及在动物模型中的强效抗肿瘤活性形成鲜明对比。为了解释其在细胞培养中约100倍更高的效力,人们提出了几种模型,包括GA类似物与由五种蛋白质组成的Hsp90复合物的结合亲和力高于与单独的Hsp90的结合亲和力。我们已经确定,GA和荧光类似物BODIPY-GA(BDGA)与纯化的Hsp90均表现出缓慢、紧密的结合。用于表征配体与Hsp90相互作用动力学的BDGA,被发现以k(off) = 2.5 x 10(-3) min(-1)、t(1/2) = 4.6 h和Ki* = 10 nM的参数与Hsp90α结合。研究发现,BDGA与功能性多蛋白Hsp90复合物的结合动力学和亲和力与单独的Hsp90相同。此外,BDGA以时间依赖性方式与多种细胞裂解物中的Hsp90结合,动力学相似。因此,我们的结果表明,GA在细胞培养和体内的高效力可归因于其与Hsp90的时间依赖性紧密结合。从更广泛的背景来看,这些研究强调了详细的药物-靶点相互作用生化表征对于将体外药理学有效转化为细胞和体内疗效的重要性。

相似文献

1
A biochemical rationale for the anticancer effects of Hsp90 inhibitors: slow, tight binding inhibition by geldanamycin and its analogues.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7625-30. doi: 10.1073/pnas.0602650103. Epub 2006 May 9.
2
Mechanistic studies on Hsp90 inhibition by ansamycin derivatives.
J Mol Biol. 2007 Sep 14;372(2):287-97. doi: 10.1016/j.jmb.2007.06.065. Epub 2007 Jun 29.
6
The Ah receptor is a sensitive target of geldanamycin-induced protein turnover.
Arch Biochem Biophys. 1997 Dec 1;348(1):190-8. doi: 10.1006/abbi.1997.0398.
7
Development of a fluorescence polarization assay for the molecular chaperone Hsp90.
J Biomol Screen. 2004 Aug;9(5):375-81. doi: 10.1177/1087057104265995.
10
Thermodynamic Analysis of the Geldanamycin-Hsp90 Interaction in a Whole Cell Lysate Using a Mass Spectrometry-Based Proteomics Approach.
J Am Soc Mass Spectrom. 2016 Oct;27(10):1670-6. doi: 10.1007/s13361-016-1457-2. Epub 2016 Aug 16.

引用本文的文献

1
Recent developments in the identification and biosynthesis of antitumor drugs derived from microorganisms.
Eng Microbiol. 2022 Sep 3;2(4):100047. doi: 10.1016/j.engmic.2022.100047. eCollection 2022 Dec.
3
Pharmacodynamic model of slow reversible binding and its applications in pharmacokinetic/pharmacodynamic modeling: review and tutorial.
J Pharmacokinet Pharmacodyn. 2022 Oct;49(5):493-510. doi: 10.1007/s10928-022-09822-y. Epub 2022 Aug 30.
4
An update of label-free protein target identification methods for natural active products.
Theranostics. 2022 Jan 24;12(4):1829-1854. doi: 10.7150/thno.68804. eCollection 2022.
6
17-DMAG dually inhibits Hsp90 and histone lysine demethylases in alveolar rhabdomyosarcoma.
iScience. 2020 Dec 28;24(1):101996. doi: 10.1016/j.isci.2020.101996. eCollection 2021 Jan 22.
8
Drug-Target Residence Time Affects Target Occupancy through Multiple Pathways.
ACS Cent Sci. 2019 Sep 25;5(9):1614-1624. doi: 10.1021/acscentsci.9b00770. Epub 2019 Sep 3.
9
Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus.
Nat Commun. 2019 Jan 24;10(1):402. doi: 10.1038/s41467-018-08248-w.
10
Prediction of Drug-Target Binding Kinetics by Comparative Binding Energy Analysis.
ACS Med Chem Lett. 2018 Oct 4;9(11):1134-1139. doi: 10.1021/acsmedchemlett.8b00397. eCollection 2018 Nov 8.

本文引用的文献

2
Heat shock proteins and acute leukemias.
Hematology. 2005 Jun;10(3):225-35. doi: 10.1080/10245330500093120.
3
Heat-shock protein 90 inhibitors in antineoplastic therapy: is it all wrapped up?
Expert Opin Investig Drugs. 2005 Jun;14(6):569-89. doi: 10.1517/13543784.14.6.569.
5
Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer.
J Clin Oncol. 2005 Feb 20;23(6):1078-87. doi: 10.1200/JCO.2005.09.119.
6
Hsp90 chaperones wild-type p53 tumor suppressor protein.
J Biol Chem. 2004 Nov 19;279(47):48836-45. doi: 10.1074/jbc.M407601200. Epub 2004 Sep 9.
8
Development of a fluorescence polarization assay for the molecular chaperone Hsp90.
J Biomol Screen. 2004 Aug;9(5):375-81. doi: 10.1177/1087057104265995.
9
Therapeutic and diagnostic implications of Hsp90 activation.
Trends Mol Med. 2004 Jun;10(6):283-90. doi: 10.1016/j.molmed.2004.04.006.
10
Synthesis of novel fluorescent probes for the molecular chaperone Hsp90.
Bioorg Med Chem Lett. 2003 Nov 17;13(22):3975-8. doi: 10.1016/j.bmcl.2003.08.065.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验