Suppr超能文献

用于血缘同一性估计的方差计算。

Variance calculations for identity-by-descent estimation.

作者信息

McQueen Matthew B, Blacker Deborah, Laird Nan M

机构信息

Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

Am J Hum Genet. 2006 Jun;78(6):914-21. doi: 10.1086/503920. Epub 2006 Mar 29.

Abstract

Nonparametric linkage strategies often involve estimation of identity by descent (IBD) with the use of affected sibling pairs. Methods for IBD estimation are well established and have been successful for mapping complex traits. However, the majority of linkage approaches involving IBD have focused on statistical testing, rather than on the effect estimates themselves. Through a bootstrap procedure developed for linkage-scan data sets, we provide standard errors for the estimated mean IBD that are broadly applicable. Applications that benefit from the availability of standard errors include effect-size estimates and confidence intervals; meta-analyses, including tests for heterogeneity; and discordant-sibling-pair evaluation. We demonstrate the use of estimated mean IBD and its standard errors in the National Institute of Mental Health Human Genetics Initiative linkage samples for bipolar disorder and Alzheimer disease. Mean IBD and its standard errors are valuable tools for the further assessment and evaluation of linkage-scan samples involving complex disease.

摘要

非参数连锁策略通常涉及利用患病同胞对来估计同源染色体同一性(IBD)。IBD估计方法已经成熟,并且在复杂性状定位方面取得了成功。然而,大多数涉及IBD的连锁分析方法都集中在统计检验上,而不是效应估计本身。通过为连锁扫描数据集开发的自助程序,我们提供了广泛适用的估计平均IBD的标准误差。受益于标准误差可用性的应用包括效应大小估计和置信区间;荟萃分析,包括异质性检验;以及不一致同胞对评估。我们展示了估计平均IBD及其标准误差在国立精神卫生研究所双相情感障碍和阿尔茨海默病人类遗传学倡议连锁样本中的应用。平均IBD及其标准误差是进一步评估和评价涉及复杂疾病的连锁扫描样本的有价值工具。

相似文献

1
Variance calculations for identity-by-descent estimation.用于血缘同一性估计的方差计算。
Am J Hum Genet. 2006 Jun;78(6):914-21. doi: 10.1086/503920. Epub 2006 Mar 29.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验