Suppr超能文献

迈向用于RNA干扰全基因组筛选的自动化细胞图像分割

Towards automated cellular image segmentation for RNAi genome-wide screening.

作者信息

Zhou Xiaobo, Liu K Y, Bradley P, Perrimon N, Wong Stephen T C

机构信息

Center for Bioinformatics, Harvard Center for Neurodegeneration and Repair, Harvard Medical School, 3rd floor, 1249 Boylston, Boston, MA 02215, USA.

出版信息

Med Image Comput Comput Assist Interv. 2005;8(Pt 1):885-92. doi: 10.1007/11566465_109.

Abstract

The Rho family of small GTPases is essential for morphological changes during normal cell development and migration, as well as during disease states such as cancer. Our goal is to identify novel effectors of Rho proteins using a cell-based assay for Rho activity to perform genome-wide functional screens using double stranded RNA (dsRNAs) interference. We aim to discover genes could cause the cell phenotype changed dramatically. Biologists currently attempt to perform the genome-wide RNAi screening to identify various image phenotypes. RNAi genome-wide screening, however, could easily generate more than a million of images per study, manual analysis is thus prohibitive. Image analysis becomes a bottleneck in realizing high content imaging screens. We propose a two-step segmentation approach to solve this problem. First, we determine the center of a cell using the information in the DNA-channel by segmenting the DNA nuclei and the dissimilarity function is employed to attenuate the over-segmentation problem, then we estimate a rough boundary for each cell using a polygon. Second, we apply fuzzy c-means based multi-threshold segmentation and sharpening technology; for isolation of touching spots, marker-controlled watershed is employed to remove touching cells. Furthermore, Voronoi diagrams are employed to correct the segmentation errors caused by overlapping cells. Image features are extracted for each cell. K-nearest neighbor classifier (KNN) is employed to perform cell phenotype classification. Experimental results indicate that the proposed approach can be used to identify cell phenotypes of RNAi genome-wide screens.

摘要

小GTP酶的Rho家族对于正常细胞发育和迁移过程中的形态变化至关重要,在癌症等疾病状态下也是如此。我们的目标是使用基于细胞的Rho活性检测方法,通过双链RNA(dsRNA)干扰进行全基因组功能筛选,以鉴定Rho蛋白的新型效应器。我们旨在发现能使细胞表型发生显著变化的基因。目前生物学家试图进行全基因组RNA干扰筛选以识别各种图像表型。然而,全基因组RNA干扰筛选每项研究很容易产生超过一百万张图像,因此手动分析是行不通的。图像分析成为实现高内涵成像筛选的瓶颈。我们提出一种两步分割方法来解决这个问题。首先,通过分割DNA细胞核利用DNA通道中的信息确定细胞中心,并采用差异函数来减轻过分割问题,然后我们使用多边形为每个细胞估计一个大致边界。其次,我们应用基于模糊c均值的多阈值分割和锐化技术;为了分离接触点,采用标记控制的分水岭算法来去除接触的细胞。此外,使用Voronoi图来纠正由重叠细胞引起的分割错误。为每个细胞提取图像特征。采用K近邻分类器(KNN)进行细胞表型分类。实验结果表明,所提出的方法可用于识别全基因组RNA干扰筛选的细胞表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验