Styner Martin A, Oguz Ipek, Smith Rachel Gimpel, Cascio Carissa, Jomier Matthieu
Dept. of Computer Science, Univ. of North Carolina, Chapel Hill, NC 27599, USA.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):765-72. doi: 10.1007/11566489_94.
Statistical shape analysis has become of increasing interest to the neuroimaging community due to its potential to locate morphological changes. In this paper, we present the a novel combination of shape analysis and Diffusion Tensor Image (DTI) Tractography to the computation of a probabilistic, model based corpus callosum (CC) subdivision. The probabilistic subdivision is based on the distances of arc-length parameterized corpus callosum contour points to trans-callosal DTI fibers associated with an automatic lobe subdivision. Our proposed subdivision method is automatic and reproducible, Its results are more stable than the Witelson subdivision scheme or other commonly applied schemes based on the CC bounding box. We present the application of our subdivision method to a small scale study of regional CC area growth in healthy subjects from age 2 to 4 years.
由于统计形状分析在定位形态变化方面的潜力,它已越来越受到神经成像领域的关注。在本文中,我们提出了一种形状分析与扩散张量成像(DTI)纤维束成像的新颖结合方法,用于基于模型的概率性胼胝体(CC)细分计算。概率性细分基于弧长参数化的胼胝体轮廓点到与自动脑叶细分相关的跨胼胝体DTI纤维的距离。我们提出的细分方法是自动且可重复的,其结果比Witelson细分方案或其他基于CC边界框的常用方案更稳定。我们展示了我们的细分方法在一项小规模研究中的应用,该研究旨在研究2至4岁健康受试者的区域CC面积增长情况。