Suppr超能文献

使用稀疏形状模型提高检测海马体和杏仁核衰老效应的统计功效。

Improved Statistical Power with a Sparse Shape Model in Detecting an Aging Effect in the Hippocampus and Amygdala.

作者信息

Chung Moo K, Kim Seung-Goo, Schaefer Stacey M, van Reekum Carien M, Peschke-Schmitz Lara, Sutterer Matthew J, Davidson Richard J

机构信息

University of Wisconsin-Madison, USA.

Max Planck Institute, Germany.

出版信息

Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034:90340Y. doi: 10.1117/12.2036497.

Abstract

The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace-Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Traditionally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.

摘要

稀疏回归框架已在医学图像处理与分析中得到广泛应用。然而,它在解剖学研究中却很少被使用。我们提出了一种基于基础形状的拉普拉斯 - 贝尔特拉米(LB)特征函数的稀疏形状建模框架,并展示了其在统计功效方面的提升。传统上,LB 特征函数被用作将表面形状内在表示为傅里叶描述符形式的基础。为了减少高频噪声,在展开式中仅使用前几项,而高频项则被简单舍弃。然而,一些低频项在重建表面时不一定有显著贡献。受此想法启发,我们提出一种基于 LB 的方法,通过施加稀疏惩罚来仅滤除显著的特征函数。对于密集的解剖数据,如表面网格上的变形场,稀疏回归的作用类似于平滑过程,这将减少错误检测假阴性的误差。因此统计功效得到提高。然后将稀疏形状模型应用于研究年龄对正常人群杏仁核和海马体形状的影响。通过展示统计功效的提高证明了 LB 稀疏框架的优势。

相似文献

4
Heat kernel smoothing using Laplace-Beltrami eigenfunctions.使用拉普拉斯 - 贝尔特拉米特征函数的热核平滑处理。
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):505-12. doi: 10.1007/978-3-642-15711-0_63.
6
Spectral Laplace-Beltrami wavelets with applications in medical images.带应用于医学图像的谱拉普拉斯 - 贝尔特拉米小波。
IEEE Trans Med Imaging. 2015 May;34(5):1005-17. doi: 10.1109/TMI.2014.2363884. Epub 2014 Oct 17.

本文引用的文献

3
Heat kernel smoothing using Laplace-Beltrami eigenfunctions.使用拉普拉斯 - 贝尔特拉米特征函数的热核平滑处理。
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):505-12. doi: 10.1007/978-3-642-15711-0_63.
5
Multi-structure network shape analysis via normal surface momentum maps.通过法向表面动量图进行多结构网络形状分析。
Neuroimage. 2008 Oct 1;42(4):1430-8. doi: 10.1016/j.neuroimage.2008.04.257. Epub 2008 May 10.
7
Age effects on hippocampal structural changes in old men: the HAAS.年龄对老年男性海马体结构变化的影响:HAAS研究。
Neuroimage. 2008 Apr 15;40(3):1003-15. doi: 10.1016/j.neuroimage.2007.12.034. Epub 2007 Dec 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验