Suppr超能文献

使用稀疏形状模型提高检测海马体和杏仁核衰老效应的统计功效。

Improved Statistical Power with a Sparse Shape Model in Detecting an Aging Effect in the Hippocampus and Amygdala.

作者信息

Chung Moo K, Kim Seung-Goo, Schaefer Stacey M, van Reekum Carien M, Peschke-Schmitz Lara, Sutterer Matthew J, Davidson Richard J

机构信息

University of Wisconsin-Madison, USA.

Max Planck Institute, Germany.

出版信息

Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034:90340Y. doi: 10.1117/12.2036497.

Abstract

The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace-Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Traditionally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.

摘要

稀疏回归框架已在医学图像处理与分析中得到广泛应用。然而,它在解剖学研究中却很少被使用。我们提出了一种基于基础形状的拉普拉斯 - 贝尔特拉米(LB)特征函数的稀疏形状建模框架,并展示了其在统计功效方面的提升。传统上,LB 特征函数被用作将表面形状内在表示为傅里叶描述符形式的基础。为了减少高频噪声,在展开式中仅使用前几项,而高频项则被简单舍弃。然而,一些低频项在重建表面时不一定有显著贡献。受此想法启发,我们提出一种基于 LB 的方法,通过施加稀疏惩罚来仅滤除显著的特征函数。对于密集的解剖数据,如表面网格上的变形场,稀疏回归的作用类似于平滑过程,这将减少错误检测假阴性的误差。因此统计功效得到提高。然后将稀疏形状模型应用于研究年龄对正常人群杏仁核和海马体形状的影响。通过展示统计功效的提高证明了 LB 稀疏框架的优势。

相似文献

1
Improved Statistical Power with a Sparse Shape Model in Detecting an Aging Effect in the Hippocampus and Amygdala.
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034:90340Y. doi: 10.1117/12.2036497.
2
Sparse Shape Representation using the Laplace-Beltrami Eigenfunctions and Its Application to Modeling Subcortical Structures.
Proc Workshop Math Methods Biomed Image Analysis. 2012:25-32. doi: 10.1109/MMBIA.2012.6164736.
3
Laplace-Beltrami Eigenvalues and Topological Features of Eigenfunctions for Statistical Shape Analysis.
Comput Aided Des. 2009 Oct 1;41(10):739-755. doi: 10.1016/j.cad.2009.02.007.
4
Heat kernel smoothing using Laplace-Beltrami eigenfunctions.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):505-12. doi: 10.1007/978-3-642-15711-0_63.
5
Morphometry of anatomical shape complexes with dense deformations and sparse parameters.
Neuroimage. 2014 Nov 1;101:35-49. doi: 10.1016/j.neuroimage.2014.06.043. Epub 2014 Jun 26.
6
Spectral Laplace-Beltrami wavelets with applications in medical images.
IEEE Trans Med Imaging. 2015 May;34(5):1005-17. doi: 10.1109/TMI.2014.2363884. Epub 2014 Oct 17.
7
Robust surface reconstruction via Laplace-Beltrami eigen-projection and boundary deformation.
IEEE Trans Med Imaging. 2010 Dec;29(12):2009-22. doi: 10.1109/TMI.2010.2057441. Epub 2010 Jul 12.
8
Conformal mapping via metric optimization with application for cortical label fusion.
Inf Process Med Imaging. 2013;23:244-55. doi: 10.1007/978-3-642-38868-2_21.
9
Hippocampal Shape Modeling Based on a Progressive Template Surface Deformation and its Verification.
IEEE Trans Med Imaging. 2015 Jun;34(6):1242-61. doi: 10.1109/TMI.2014.2382581. Epub 2014 Dec 18.
10
Statistical shape model reconstruction with sparse anomalous deformations: Application to intervertebral disc herniation.
Comput Med Imaging Graph. 2015 Dec;46 Pt 1:11-19. doi: 10.1016/j.compmedimag.2015.05.002. Epub 2015 May 21.

本文引用的文献

3
Heat kernel smoothing using Laplace-Beltrami eigenfunctions.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):505-12. doi: 10.1007/978-3-642-15711-0_63.
4
Aging is associated with positive responding to neutral information but reduced recovery from negative information.
Soc Cogn Affect Neurosci. 2011 Apr;6(2):177-85. doi: 10.1093/scan/nsq031. Epub 2010 Apr 12.
5
Multi-structure network shape analysis via normal surface momentum maps.
Neuroimage. 2008 Oct 1;42(4):1430-8. doi: 10.1016/j.neuroimage.2008.04.257. Epub 2008 May 10.
6
Detection of focal changes in human cortical thickness: spherical wavelets versus Gaussian smoothing.
Neuroimage. 2008 Jul 15;41(4):1278-92. doi: 10.1016/j.neuroimage.2008.03.022. Epub 2008 Mar 26.
7
Age effects on hippocampal structural changes in old men: the HAAS.
Neuroimage. 2008 Apr 15;40(3):1003-15. doi: 10.1016/j.neuroimage.2007.12.034. Epub 2007 Dec 27.
9
Power and sample size calculation for neuroimaging studies by non-central random field theory.
Neuroimage. 2007 Sep 1;37(3):721-30. doi: 10.1016/j.neuroimage.2007.06.009. Epub 2007 Jun 18.
10
Multiscale 3-D shape representation and segmentation using spherical wavelets.
IEEE Trans Med Imaging. 2007 Apr;26(4):598-618. doi: 10.1109/TMI.2007.893284.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验