Suppr超能文献

CTA图像中颈动脉分割的自动初始化算法

Automatic initialization algorithm for carotid artery segmentation in CTA images.

作者信息

Sanderse Martijn, Marquering Henk A, Hendriks Emile A, van der Lugt Aad, Reiber Johan H C

机构信息

Dept. of Radiology, Div. of Image Processing, LUMC, Leiden, The Netherlands.

出版信息

Med Image Comput Comput Assist Interv. 2005;8(Pt 2):846-53. doi: 10.1007/11566489_104.

Abstract

Analysis of CT datasets is commonly time consuming because of the required manual interaction. We present a novel and fast automatic initialization algorithm to detect the carotid arteries providing a fully automated approach of the segmentation and centerline detection. First, the volume of interest (VOI) is estimated using a shoulder landmark. The carotid arteries are subsequently detected in axial slices of the VOI by applying a circular Hough transform. To select carotid arteries related signals in the Hough space, a 3-D, direction dependent hierarchical clustering is used. To allow a successful detection for a wide range of vessel diameters, a feedback architecture was introduced. The algorithm was designed and optimized using a training set of 20 patients and subsequently evaluated using 31 test datasets. The detection algorithm, including VOI estimation, correctly detects 88% of the carotid arteries. Even though not all carotid arteries have been correctly detected, the results are very promising.

摘要

由于需要人工交互,CT数据集的分析通常很耗时。我们提出了一种新颖且快速的自动初始化算法来检测颈动脉,提供了一种完全自动化的分割和中心线检测方法。首先,使用肩部标志点估计感兴趣体积(VOI)。随后,通过应用圆形霍夫变换在VOI的轴向切片中检测颈动脉。为了在霍夫空间中选择与颈动脉相关的信号,使用了一种三维、方向相关的层次聚类方法。为了能够成功检测各种血管直径,引入了一种反馈架构。该算法使用20名患者的训练集进行设计和优化,随后使用31个测试数据集进行评估。包括VOI估计在内的检测算法能够正确检测出88%的颈动脉。尽管并非所有颈动脉都被正确检测到,但结果非常有前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验