Suppr超能文献

基于半自动水平集的三维CTA数据集中颈内动脉分割与狭窄量化

Semi-automatic level-set based segmentation and stenosis quantification of the internal carotid artery in 3D CTA data sets.

作者信息

Scherl Holger, Hornegger Joachim, Prümmer Marcus, Lell Michael

机构信息

Institute of Pattern Recognition, Department of Computer Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 3, D-91058 Erlangen, Germany.

出版信息

Med Image Anal. 2007 Feb;11(1):21-34. doi: 10.1016/j.media.2006.09.004. Epub 2006 Nov 27.

Abstract

We present a new level-set based method to segment and quantify stenosed internal carotid arteries (ICAs) in 3D contrast-enhanced computed tomography angiography (CTA). Within these data sets it is a difficult task to evaluate the degree of stenoses deterministically even for the experienced physician because the actual vessel lumen is hardly distinguishable from calcified plaque and there is no sharp border between lumen and arterial wall. According to our knowledge no commercially available software package allows the detection of the boundary between lumen and plaque components. Therefore in the clinical environment physicians have to perform the evaluation manually. This approach suffers from both intra- and inter-observer variability. The limitation of the manual approach requires the development of a semi-automatic method that is able to achieve deterministic segmentation results of the internal carotid artery via level-set techniques. With the new method different kinds of plaques were almost completely excluded from the segmented regions. For an objective evaluation we also studied the method's performance with four different phantom data sets for which the ground truth of the degree of stenosis was known a priori. Finally, we applied the method to 10 ICAs and compared the obtained segmentations with manual measurements of three physicians.

摘要

我们提出了一种基于水平集的新方法,用于在三维对比增强计算机断层血管造影(CTA)中分割和量化狭窄的颈内动脉(ICA)。在这些数据集中,即使对于经验丰富的医生来说,确定性地评估狭窄程度也是一项艰巨的任务,因为实际血管腔很难与钙化斑块区分开来,并且在管腔和动脉壁之间没有清晰的边界。据我们所知,没有商业可用的软件包能够检测管腔和斑块成分之间的边界。因此,在临床环境中,医生必须手动进行评估。这种方法存在观察者内和观察者间的变异性。手动方法的局限性要求开发一种半自动方法,该方法能够通过水平集技术实现颈内动脉的确定性分割结果。使用新方法,不同类型的斑块几乎完全被排除在分割区域之外。为了进行客观评估,我们还使用四个不同的体模数据集研究了该方法的性能,对于这些数据集,狭窄程度的真实情况是事先已知的。最后,我们将该方法应用于10条颈内动脉,并将获得的分割结果与三位医生的手动测量结果进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验