Kojima Yoshitsugu, Matsumoto Mitsuru, Kawai Yasuaki, Haga Tetsuya, Ohba Nobuko, Miwa Kazutoshi, Towata Shin-ichi, Nakamori Yuko, Orimo Shin-ichi
Toyota Central R&D Labs, Inc., Nagakute-cho, Aichi-gun, Aichi, 480-1192, Japan.
J Phys Chem B. 2006 May 18;110(19):9632-6. doi: 10.1021/jp060525z.
Lithium hexahydridoaluminate Li(3)AlH(6) and lithium amide LiNH(2) with 1:2 molar ratio were mechanically milled, yielding a Li-Al-N-H system. LiNH(2) destabilized Li(3)AlH(6) during the dehydrogenation process of Li(3)AlH(6), because the dehydrogenation starting temperature of the Li-Al-N-H system was lower than that of Li(3)AlH(6). Temperature-programmed desorption scans of the Li-Al-N-H system indicated that a large amount of hydrogen (6.9 wt %) can be released between 370 and 773 K. After initial H(2) desorption, the H(2) absorption and the desorption capacities of the Li-Al-N-H system with a nano-Ni catalyst exhibited 3-4 wt % at 10-0.004 MPa and 473-573 K, while the capacities of the system without the catalyst were 1-2 wt %. The remarkably increased capacity was due to the fact that the kinetics was improved by addition of the nano-Ni catalyst.
将六氢铝酸锂Li(3)AlH(6)与摩尔比为1:2的氨基锂LiNH(2)进行机械研磨,得到Li-Al-N-H体系。在Li(3)AlH(6)的脱氢过程中,LiNH(2)使Li(3)AlH(6)不稳定,因为Li-Al-N-H体系的脱氢起始温度低于Li(3)AlH(6)的脱氢起始温度。对Li-Al-N-H体系进行程序升温脱附扫描表明,在370至773K之间可释放大量氢气(6.9重量%)。在初始氢气脱附后,添加纳米镍催化剂的Li-Al-N-H体系在10 - 0.004MPa和473 - 573K下的氢气吸收和脱附容量为3 - 4重量%,而无催化剂体系的容量为1 - 2重量%。容量显著增加是由于添加纳米镍催化剂改善了动力学。