Pecqueur Ludovic, D'Autréaux Benoît, Dupuy Jérome, Nicolet Yvain, Jacquamet Lilian, Brutscher Bernhard, Michaud-Soret Isabelle, Bersch Beate
Laboratoire de Physicochimie des Métaux en Biologie (Unité Mixte de Recherche 5155 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), Département Réponse et Dynamique Cellulaires, Commissariat à l'Energie Atomique-Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France; Laboratoire de Résonance Magnétique Nucléaire des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1.
Laboratoire de Physicochimie des Métaux en Biologie (Unité Mixte de Recherche 5155 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), Département Réponse et Dynamique Cellulaires, Commissariat à l'Energie Atomique-Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France.
J Biol Chem. 2006 Jul 28;281(30):21286-21295. doi: 10.1074/jbc.M601278200. Epub 2006 May 11.
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8A resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.
铁摄取调节蛋白(Fur)是一种全局性细菌调节蛋白,它以铁作为辅因子与特定DNA序列结合。大肠杆菌Fur通常以同型二聚体形式分离出来,每个亚基有两个金属位点。金属与铁位点的结合会诱导蛋白质激活;然而,结构锌位点的确切作用仍然未知。我们对大肠杆菌Fur蛋白的三种不同形式(未激活的二聚体、单体和截短的Fur-(1-82))进行了结构研究。在存在还原剂(二硫苏糖醇)和Zn(II)的情况下,通过核磁共振跟踪氧化单体的二聚化过程。二硫键的还原仅导致局部结构变化,而向还原的Fur中添加锌会诱导蛋白质二聚化。这首次证明了锌在四级结构稳定中的重要作用。单体和二聚体形式的二级结构在N端DNA结合结构域中几乎是保守的,除了第一个螺旋,它在未激活的二聚体中不存在。相比之下,C端二聚化结构域在二聚体中结构良好,但在单体中显得灵活。异核Overhauser效应数据也证实了这一点。我们描述了截短蛋白(Fur-(1-82))在1.8埃分辨率下的晶体结构,发现它与单体和金属激活状态下的N端结构域相同。总之,这些数据使我们能够提出一种大肠杆菌Fur的激活机制,该机制涉及N端螺旋的折叠/展开。