Tyurina Yulia Y, Kini Vidisha, Tyurin Vladimir A, Vlasova Irina I, Jiang Jianfei, Kapralov Alexander A, Belikova Natalia A, Yalowich Jack C, Kurnikov Igor V, Kagan Valerian E
Center for Free Radical and Antioxidant Health, Department of EOH, Bridgeside Point, 100 Technology Drive, Suite 350, Pittsburgh, PA 15219, USA.
Mol Pharmacol. 2006 Aug;70(2):706-17. doi: 10.1124/mol.106.022731. Epub 2006 May 11.
Execution of apoptotic program in mitochondria is associated with accumulation of cardiolipin peroxidation products required for the release of proapoptotic factors into the cytosol. This suggests that lipid antioxidants capable of inhibiting cardiolipin peroxidation may act as antiapoptotic agents. Etoposide, a widely used antitumor drug and a topoisomerase II inhibitor, is a prototypical inducer of apoptosis and, at the same time, an effective lipid radical scavenger and lipid antioxidant. Here, we demonstrate that cardiolipin oxidation during apoptosis is realized not via a random cardiolipin peroxidation mechanism but rather proceeds as a result of peroxidase reaction in a tight cytochrome c/cardiolipin complex that restrains interactions of etoposide with radical intermediates generated in the course of the reaction. Using low-temperature and ambient-temperature electron paramagnetic resonance spectroscopy of H(2)O(2)-induced protein-derived (tyrosyl) radicals and etoposide phenoxyl radicals, respectively, we established that cardiolipin peroxidation and etoposide oxidation by cytochrome c/cardiolipin complex takes place predominantly on protein-derived radicals of cytochrome c. We further show that etoposide can inhibit cytochrome c-catalyzed oxidation of cardiolipin competing with it as a peroxidase substrate. Peroxidase reaction of cytochrome c/cardiolipin complexes causes cross-linking and oligomerization of cytochrome c. With nonoxidizable tetraoleoyl-cardiolipin, the cross-linking occurs via dityrosine formation, whereas bifunctional lipid oxidation products generated from tetralinoleoyl-cardiolipin participate in the production of high molecular weight protein aggregates. Protein aggregation is effectively inhibited by etoposide. The inhibition of cardiolipin peroxidation by etoposide, however, is realized at far higher concentrations than those at which it induces apoptotic cell death. Thus, oxidation of cardiolipin by the cytochrome c/cardiolipin peroxidase complex, which is essential for apoptosis, is not inhibited by proapoptotic concentrations of the drug.
线粒体中凋亡程序的执行与心磷脂过氧化产物的积累有关,这些产物是促凋亡因子释放到细胞质中所必需的。这表明能够抑制心磷脂过氧化的脂质抗氧化剂可能作为抗凋亡剂发挥作用。依托泊苷是一种广泛使用的抗肿瘤药物和拓扑异构酶II抑制剂,是凋亡的典型诱导剂,同时也是一种有效的脂质自由基清除剂和脂质抗氧化剂。在这里,我们证明凋亡过程中心磷脂的氧化不是通过随机的心磷脂过氧化机制实现的,而是由于在紧密的细胞色素c/心磷脂复合物中的过氧化物酶反应导致的,该复合物抑制了依托泊苷与反应过程中产生的自由基中间体的相互作用。分别使用低温和常温电子顺磁共振光谱对H₂O₂诱导的蛋白质衍生(酪氨酸基)自由基和依托泊苷苯氧基自由基进行研究,我们确定细胞色素c/心磷脂复合物的心磷脂过氧化和依托泊苷氧化主要发生在细胞色素c的蛋白质衍生自由基上。我们进一步表明,依托泊苷可以抑制细胞色素c催化的心磷脂氧化,与它竞争作为过氧化物酶底物。细胞色素c/心磷脂复合物的过氧化物酶反应导致细胞色素c的交联和寡聚化。对于不可氧化的四油酰心磷脂,交联通过二酪氨酸形成发生,而由四亚油酰心磷脂产生的双功能脂质氧化产物参与高分子量蛋白质聚集体的产生。依托泊苷有效地抑制了蛋白质聚集。然而,依托泊苷对心磷脂过氧化的抑制是在远高于其诱导凋亡细胞死亡的浓度下实现的。因此,药物的促凋亡浓度不会抑制细胞色素c/心磷脂过氧化物酶复合物对心磷脂的氧化,而这种氧化对凋亡至关重要。