Suppr超能文献

哮喘支气管收缩患者的局部肺灌注、充气和通气缺陷

Regional pulmonary perfusion, inflation, and ventilation defects in bronchoconstricted patients with asthma.

作者信息

Harris R Scott, Winkler Tilo, Tgavalekos Nora, Musch Guido, Melo Marcos F Vidal, Schroeder Tobias, Chang Yuchiao, Venegas José G

机构信息

Department of Medicine (Pulmonary and Critical Care Unit and General Medicine Unit), Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.

出版信息

Am J Respir Crit Care Med. 2006 Aug 1;174(3):245-53. doi: 10.1164/rccm.200510-1634OC. Epub 2006 May 11.

Abstract

RATIONALE

Bronchoconstriction in asthma leads to heterogeneous ventilation and the formation of large and contiguous ventilation defects in the lungs. However, the regional adaptations of pulmonary perfusion (Q) to such ventilation defects have not been well studied.

METHODS

We used positron emission tomography to assess the intrapulmonary kinetics of intravenously infused tracer nitrogen-13 ((13)NN), and measured the regional distributions of ventilation and perfusion in 11 patients with mild asthma. For each subject, the regional washout kinetics of (13)NN before and during methacholine-induced bronchoconstriction were analyzed. Two regions of interest (ROIs) were defined: one over a spatially contiguous area of high tracer retention (TR) during bronchoconstriction and a second one covering an area of similar size, showing minimal tracer retention (NR).

RESULTS

Both ROIs demonstrated heterogeneous washout kinetics, which could be described by a two-compartment model with fast and slow washout rates. We found a systematic reduction in regional Q to the TR ROI during bronchoconstriction and a variable and nonsignificant change in relative Q for NR regions. The reduction in regional Q was associated with an increase in regional gas content of the TR ROI, but its magnitude was greater than that anticipated solely by the change in regional lung inflation.

CONCLUSION

During methacholine-induced bronchoconstriction, perfusion to ventilation defects are systematically reduced by a relative increase in regional pulmonary vascular resistance.

摘要

原理

哮喘中的支气管收缩会导致通气不均一,并在肺部形成大的、连续的通气缺陷。然而,肺灌注(Q)对这种通气缺陷的区域适应性尚未得到充分研究。

方法

我们使用正电子发射断层扫描来评估静脉注射示踪剂氮-13(13NN)的肺内动力学,并测量了11例轻度哮喘患者的通气和灌注区域分布。对于每个受试者,分析了在乙酰甲胆碱诱导的支气管收缩之前和期间13NN的区域洗脱动力学。定义了两个感兴趣区域(ROI):一个位于支气管收缩期间示踪剂保留(TR)较高的空间连续区域上,另一个覆盖大小相似、示踪剂保留(NR)最小的区域。

结果

两个ROI均显示出不均一的洗脱动力学,可用具有快速和慢速洗脱速率的两室模型来描述。我们发现支气管收缩期间TR ROI的区域Q系统性降低,而NR区域的相对Q变化不定且无显著意义。区域Q的降低与TR ROI的区域气体含量增加有关,但其幅度大于仅由区域肺膨胀变化所预期的幅度。

结论

在乙酰甲胆碱诱导的支气管收缩期间,区域肺血管阻力相对增加会系统性地减少对通气缺陷区域的灌注。

相似文献

1
Regional pulmonary perfusion, inflation, and ventilation defects in bronchoconstricted patients with asthma.
Am J Respir Crit Care Med. 2006 Aug 1;174(3):245-53. doi: 10.1164/rccm.200510-1634OC. Epub 2006 May 11.
2
The prone position results in smaller ventilation defects during bronchoconstriction in asthma.
J Appl Physiol (1985). 2009 Jul;107(1):266-74. doi: 10.1152/japplphysiol.91386.2008. Epub 2009 May 14.
4
Hypoxic Pulmonary Vasoconstriction Does Not Explain All Regional Perfusion Redistribution in Asthma.
Am J Respir Crit Care Med. 2017 Oct 1;196(7):834-844. doi: 10.1164/rccm.201612-2438OC.
5
Ventilation defect formation in healthy and asthma subjects is determined by lung inflation.
PLoS One. 2012;7(12):e53216. doi: 10.1371/journal.pone.0053216. Epub 2012 Dec 28.
6
Regional Ventilation and Aerosol Deposition with Helium-Oxygen in Bronchoconstricted Asthmatic Lungs.
J Aerosol Med Pulm Drug Deliv. 2016 Jun;29(3):260-72. doi: 10.1089/jamp.2014.1204. Epub 2016 Jan 29.
7
Regional airflow obstruction after bronchoconstriction and subsequent bronchodilation in subjects without pulmonary disease.
J Appl Physiol (1985). 2019 Jul 1;127(1):31-39. doi: 10.1152/japplphysiol.00912.2018. Epub 2019 May 23.
8
Regional pulmonary response to a methacholine challenge using hyperpolarized (3)He magnetic resonance imaging.
Respirology. 2012 Nov;17(8):1237-46. doi: 10.1111/j.1440-1843.2012.02250.x.
9
Topographic basis of bimodal ventilation-perfusion distributions during bronchoconstriction in sheep.
Am J Respir Crit Care Med. 2005 Apr 1;171(7):714-21. doi: 10.1164/rccm.200409-1296OC. Epub 2005 Jan 7.
10
Peripheral ventilation heterogeneity determines the extent of bronchoconstriction in asthma.
J Appl Physiol (1985). 2017 Nov 1;123(5):1188-1194. doi: 10.1152/japplphysiol.00640.2016. Epub 2017 Aug 10.

引用本文的文献

2
Lung functional imaging.
Breathe (Sheff). 2023 Sep;19(3):220272. doi: 10.1183/20734735.0272-2022. Epub 2023 Nov 14.
3
Measuring Anatomical Distributions of Ventilation and Aerosol Deposition with PET-CT.
J Aerosol Med Pulm Drug Deliv. 2023 Aug;36(4):210-227. doi: 10.1089/jamp.2023.29086.jgv.
5
Measuring short-term changes in specific ventilation using dynamic specific ventilation imaging.
J Appl Physiol (1985). 2022 Jun 1;132(6):1370-1378. doi: 10.1152/japplphysiol.00652.2021. Epub 2022 Apr 28.
8
PET Imaging Reveals Early Pulmonary Perfusion Abnormalities in HIV Infection Similar to Smoking.
J Nucl Med. 2021 Mar;62(3):405-411. doi: 10.2967/jnumed.120.245977. Epub 2020 Aug 6.
9
Airway Transmural Pressures in an Airway Tree During Bronchoconstriction in Asthma.
J Eng Sci Med Diagn Ther. 2019 Feb;2(1):0110051-110056. doi: 10.1115/1.4042478. Epub 2019 Feb 13.
10
Patient-specific modeling of aerosol delivery in healthy and asthmatic adults.
J Appl Physiol (1985). 2019 Dec 1;127(6):1720-1732. doi: 10.1152/japplphysiol.00221.2019. Epub 2019 Sep 12.

本文引用的文献

1
Airway remodeling contributes to the progressive loss of lung function in asthma: an overview.
J Allergy Clin Immunol. 2005 Sep;116(3):477-86; quiz 487. doi: 10.1016/j.jaci.2005.07.011.
2
Self-organized patchiness in asthma as a prelude to catastrophic shifts.
Nature. 2005 Apr 7;434(7034):777-82. doi: 10.1038/nature03490. Epub 2005 Mar 16.
3
Topographic basis of bimodal ventilation-perfusion distributions during bronchoconstriction in sheep.
Am J Respir Crit Care Med. 2005 Apr 1;171(7):714-21. doi: 10.1164/rccm.200409-1296OC. Epub 2005 Jan 7.
6
Impedance, gas mixing, and bimodal ventilation in constricted lungs.
J Appl Physiol (1985). 2003 Mar;94(3):1003-11. doi: 10.1152/japplphysiol.00569.2002.
7
Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone humans.
J Appl Physiol (1985). 2002 Nov;93(5):1841-51. doi: 10.1152/japplphysiol.00223.2002.
8
Changes in regional ventilation after autologous blood clot pulmonary embolism.
Anesthesiology. 2002 Sep;97(3):671-81. doi: 10.1097/00000542-200209000-00022.
10
Airway stability and heterogeneity in the constricted lung.
J Appl Physiol (1985). 2001 Sep;91(3):1185-92. doi: 10.1152/jappl.2001.91.3.1185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验