Suppr超能文献

低氧性肺血管收缩并不能解释哮喘中所有的区域灌注再分布。

Hypoxic Pulmonary Vasoconstriction Does Not Explain All Regional Perfusion Redistribution in Asthma.

作者信息

Kelly Vanessa J, Hibbert Kathryn A, Kohli Puja, Kone Mamary, Greenblatt Elliot E, Venegas Jose G, Winkler Tilo, Harris R Scott

机构信息

1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.

2 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and.

出版信息

Am J Respir Crit Care Med. 2017 Oct 1;196(7):834-844. doi: 10.1164/rccm.201612-2438OC.

Abstract

RATIONALE

Regional hypoventilation in bronchoconstricted patients with asthma is spatially associated with reduced perfusion, which is proposed to result from hypoxic pulmonary vasoconstriction (HPV).

OBJECTIVES

To determine the role of HPV in the regional perfusion redistribution in bronchoconstricted patients with asthma.

METHODS

Eight patients with asthma completed positron emission tomographic/computed tomographic lung imaging at baseline and after bronchoconstriction, breathing either room air or 80% oxygen (80% O) on separate days. Relative perfusion, specific ventilation (sV), and gas fraction (Fgas) in the 25% of the lung with the lowest specific ventilation (sV) and the remaining lung (sV) were quantified and compared.

MEASUREMENTS AND MAIN RESULTS

In the sV region, bronchoconstriction caused a significant decrease in sV under both room air and 80% O conditions (baseline vs. bronchoconstriction, mean ± SD, 1.02 ± 0.20 vs. 0.35 ± 0.19 and 1.03 ± 0.20 vs. 0.32 ± 0.16, respectively; P < 0.05). In the sV region, relative perfusion decreased after bronchoconstriction under room air conditions and also, to a lesser degree, under 80% O conditions (1.02 ± 0.19 vs. 0.72 ± 0.08 [P < 0.001] and 1.08 ± 0.19 vs. 0.91 ± 0.12 [P < 0.05], respectively). The Fgas increased after bronchoconstriction under room air conditions only (0.99 ± 0.04 vs. 1.00 ± 0.02; P < 0.05). The sV subregion analysis indicated that some of the reduction in relative perfusion after bronchoconstriction under 80% O conditions occurred as a result of the presence of regional hypoxia. However, relative perfusion was also significantly reduced in sV subregions that were hyperoxic under 80% O conditions.

CONCLUSIONS

HPV is not the only mechanism that contributes to perfusion redistribution in bronchoconstricted patients with asthma, suggesting that another nonhypoxia mechanism also contributes. We propose that this nonhypoxia mechanism may be either direct mechanical interactions and/or unidentified intercellular signaling between constricted airways, the parenchyma, and the surrounding vasculature.

摘要

原理

哮喘支气管收缩患者的局部通气不足在空间上与灌注减少相关,这被认为是由低氧性肺血管收缩(HPV)导致的。

目的

确定HPV在哮喘支气管收缩患者局部灌注再分布中的作用。

方法

8例哮喘患者在基线期和支气管收缩后,分别在不同日期呼吸室内空气或80%氧气(80% O₂)时完成正电子发射断层扫描/计算机断层扫描肺部成像。对肺通气量最低的25%肺区域(低sV区域)和其余肺区域(高sV区域)的相对灌注、比通气量(sV)和气分数(Fgas)进行量化并比较。

测量结果与主要结果

在低sV区域,支气管收缩在呼吸室内空气和80% O₂条件下均导致sV显著降低(基线期与支气管收缩后,平均值±标准差,分别为1.02±0.20 vs. 0.35±0.19和1.03±0.20 vs. 0.32±0.16;P<0.05)。在低sV区域,支气管收缩后在呼吸室内空气条件下相对灌注降低,在80% O₂条件下降低程度较小(分别为1.02±0.19 vs. 0.72±0.08 [P<0.001]和1.08±0.19 vs. 0.91±0.12 [P<0.05])。仅在呼吸室内空气条件下支气管收缩后Fgas增加(0.99±0.04 vs. 1.00±0.02;P<0.05)。低sV子区域分析表明,80% O₂条件下支气管收缩后相对灌注的一些降低是由于局部缺氧的存在。然而,在80% O₂条件下高氧的低sV子区域中相对灌注也显著降低。

结论

HPV不是导致哮喘支气管收缩患者灌注再分布的唯一机制,提示还存在另一种非缺氧机制。我们提出这种非缺氧机制可能是收缩气道、实质和周围血管之间的直接机械相互作用和/或未明确的细胞间信号传导。

相似文献

5
Assessing the pulmonary vascular responsiveness to oxygen with proton MRI.用质子 MRI 评估肺血管对氧气的反应性。
J Appl Physiol (1985). 2024 Apr 1;136(4):853-863. doi: 10.1152/japplphysiol.00747.2023. Epub 2024 Feb 22.
6
Hypoxic bronchodilation.低氧性支气管扩张
J Appl Physiol (1985). 1992 Sep;73(3):1202-6. doi: 10.1152/jappl.1992.73.3.1202.
7
Peripheral ventilation heterogeneity determines the extent of bronchoconstriction in asthma.周围通气不均一性决定哮喘的支气管收缩程度。
J Appl Physiol (1985). 2017 Nov 1;123(5):1188-1194. doi: 10.1152/japplphysiol.00640.2016. Epub 2017 Aug 10.
9
Regional hypoxic pulmonary vasoconstriction in prone pigs.俯卧位猪的局部低氧性肺血管收缩
J Appl Physiol (1985). 2005 Jul;99(1):363-70. doi: 10.1152/japplphysiol.00822.2004. Epub 2005 Mar 17.

引用本文的文献

1
Lung functional imaging.肺部功能成像
Breathe (Sheff). 2023 Sep;19(3):220272. doi: 10.1183/20734735.0272-2022. Epub 2023 Nov 14.
7
Altered airway mechanics in the context of obesity and asthma.肥胖与哮喘相关的气道力学改变。
J Appl Physiol (1985). 2021 Jan 1;130(1):36-47. doi: 10.1152/japplphysiol.00666.2020. Epub 2020 Oct 29.

本文引用的文献

3
Mechanical interactions between adjacent airways in the lung.肺中相邻气道之间的机械相互作用。
J Appl Physiol (1985). 2014 Mar 15;116(6):628-34. doi: 10.1152/japplphysiol.01180.2013. Epub 2014 Jan 30.
4
What are ventilation defects in asthma?哮喘中的通气缺陷是什么?
Thorax. 2014 Jan;69(1):63-71. doi: 10.1136/thoraxjnl-2013-203711. Epub 2013 Aug 16.
6
Hypoxic pulmonary vasoconstriction.低氧性肺血管收缩。
Physiol Rev. 2012 Jan;92(1):367-520. doi: 10.1152/physrev.00041.2010.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验