Suppr超能文献

从蛋白质腔的相似性分析到利用cavbase对蛋白质家族进行功能分类。

From the similarity analysis of protein cavities to the functional classification of protein families using cavbase.

作者信息

Kuhn Daniel, Weskamp Nils, Schmitt Stefan, Hüllermeier Eyke, Klebe Gerhard

机构信息

Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35032 Marburg, Germany.

出版信息

J Mol Biol. 2006 Jun 16;359(4):1023-44. doi: 10.1016/j.jmb.2006.04.024. Epub 2006 Apr 25.

Abstract

In this contribution, the classification of protein binding sites using the physicochemical properties exposed to their pockets is presented. We recently introduced Cavbase, a method for describing and comparing protein binding pockets on the basis of the geometrical and physicochemical properties of their active sites. Here, we present algorithmic and methodological enhancements in the Cavbase property description and in the cavity comparison step. We give examples of the Cavbase similarity analysis detecting pronounced similarities in the binding sites of proteins unrelated in sequence. A similarity search using SARS M(pro) protease subpockets as queries retrieved ligands and ligand fragments accommodated in a physicochemical environment similar to that of the query. This allowed the characterization of the protease recognition pockets and the identification of molecular building blocks that can be incorporated into novel antiviral compounds. A cluster analysis procedure for the functional classification of binding pockets was implemented and calibrated using a diverse set of enzyme binding sites. Two relevant protein families, the alpha-carbonic anhydrases and the protein kinases, are used to demonstrate the scope of our cluster approach. We propose a relevant classification of both protein families, on the basis of the binding motifs in their active sites. The classification provides a new perspective on functional properties across a protein family and is able to highlight features important for potency and selectivity. Furthermore, this information can be used to identify possible cross-reactivities among proteins due to similarities in their binding sites.

摘要

在本论文中,我们介绍了一种基于蛋白质结合口袋所暴露的物理化学性质对其进行分类的方法。我们最近引入了Cavbase,这是一种基于活性位点的几何和物理化学性质来描述和比较蛋白质结合口袋的方法。在此,我们展示了Cavbase性质描述和口袋比较步骤中的算法和方法改进。我们给出了Cavbase相似性分析的示例,该分析检测了序列不相关的蛋白质结合位点中的显著相似性。以严重急性呼吸综合征M(pro)蛋白酶亚口袋作为查询进行相似性搜索,检索到了容纳在与查询相似的物理化学环境中的配体和配体片段。这使得能够对蛋白酶识别口袋进行表征,并识别可纳入新型抗病毒化合物的分子构建块。我们实施了一种用于结合口袋功能分类的聚类分析程序,并使用多种酶结合位点进行了校准。使用两个相关的蛋白质家族,即α-碳酸酐酶和蛋白激酶,来展示我们聚类方法的适用范围。我们基于它们活性位点中的结合基序,对这两个蛋白质家族提出了一种相关分类。该分类为整个蛋白质家族的功能特性提供了新的视角,并且能够突出对效力和选择性重要的特征。此外,这些信息可用于识别由于蛋白质结合位点相似性而可能存在的交叉反应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b44/7094329/43e5ba7b2280/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验