Suppr超能文献

合成平均三维解剖形状。

Synthesizing average 3D anatomical shapes.

作者信息

Christensen Gary E, Johnson Hans J, Vannier Michael W

机构信息

Department of Electrical and Computer Engineering, The University of Iowa, 4324 SC, Iowa City, IA 52242, USA.

出版信息

Neuroimage. 2006 Aug 1;32(1):146-58. doi: 10.1016/j.neuroimage.2006.03.018. Epub 2006 May 11.

Abstract

Average shape estimates are often used to characterize normal morphological variation and discriminate dysmorphology in populations. The purpose of this paper is to estimate "average" or the most representative shapes in populations by using high-resolution medical images as input. The "average" shape is computed from high-dimensional spatial transformations used to co-register each subject in the population rather than the image intensities. Inverse consistent image registration is used to help minimize correspondence errors and produce better population average estimates. Testing the method was done using a population of adult MR brain scans from 22 individuals with no know structural abnormalities. Population averages were computed using the spatial transformation method and local changes in morphology were mapped. Results suggest that this method is a feasible means for robust estimation of population average shape. It is also shown that using inverse consistent transformations produces average shape estimates with less error compared to those produced with transformations with nontrivial inverse consistent errors.

摘要

平均形状估计通常用于表征正常形态变异并区分人群中的畸形。本文的目的是通过使用高分辨率医学图像作为输入来估计人群中的“平均”或最具代表性的形状。“平均”形状是根据用于对人群中的每个受试者进行配准的高维空间变换计算得出的,而不是根据图像强度。使用反向一致图像配准来帮助最小化对应误差并产生更好的人群平均估计。使用来自22名无已知结构异常的成年人的MR脑扫描人群对该方法进行了测试。使用空间变换方法计算人群平均值并绘制形态学的局部变化。结果表明,该方法是稳健估计人群平均形状的可行方法。还表明,与具有非平凡反向一致误差的变换相比,使用反向一致变换产生的平均形状估计误差更小。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验