Suppr超能文献

影响酿酒酵母中甾醇生物合成的累积突变会导致合成致死性,而这种致死性会被鞘脂谱的改变所抑制。

Cumulative mutations affecting sterol biosynthesis in the yeast Saccharomyces cerevisiae result in synthetic lethality that is suppressed by alterations in sphingolipid profiles.

作者信息

Valachovic Martin, Bareither Bart M, Shah Alam Bhuiyan M, Eckstein James, Barbuch Robert, Balderes Dina, Wilcox Lisa, Sturley Stephen L, Dickson Robert C, Bard Martin

机构信息

Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, 40536.

出版信息

Genetics. 2006 Aug;173(4):1893-908. doi: 10.1534/genetics.105.053025. Epub 2006 May 15.

Abstract

UPC2 and ECM22 belong to a Zn(2)-Cys(6) family of fungal transcription factors and have been implicated in the regulation of sterol synthesis in Saccharomyces cerevisiae and Candida albicans. Previous reports suggest that double deletion of these genes in S. cerevisiae is lethal depending on the genetic background of the strain. In this investigation we demonstrate that lethality of upc2Delta ecm22Delta in the S288c genetic background is attributable to a mutation in the HAP1 transcription factor. In addition we demonstrate that strains containing upc2Delta ecm22Delta are also inviable when carrying deletions of ERG6 and ERG28 but not when carrying deletions of ERG3, ERG4, or ERG5. It has previously been demonstrated that UPC2 and ECM22 regulate S. cerevisiae ERG2 and ERG3 and that the erg2Delta upc2Delta ecm22Delta triple mutant is also synthetically lethal. We used transposon mutagenesis to isolate viable suppressors of hap1Delta, erg2Delta, erg6Delta, and erg28Delta in the upc2Delta ecm22Delta genetic background. Mutations in two genes (YND1 and GDA1) encoding apyrases were found to suppress the synthetic lethality of three of these triple mutants but not erg2Delta upc2Delta ecm22Delta. We show that deletion of YND1, like deletion of GDA1, alters the sphingolipid profiles, suggesting that changes in sphingolipids compensate for lethality produced by changes in sterol composition and abundance.

摘要

UPC2和ECM22属于真菌转录因子的Zn(2)-Cys(6)家族,并且与酿酒酵母和白色念珠菌中甾醇合成的调控有关。先前的报道表明,在酿酒酵母中这两个基因的双缺失根据菌株的遗传背景是致死的。在本研究中,我们证明了在S288c遗传背景下upc2Δecm22Δ的致死性归因于HAP1转录因子中的一个突变。此外,我们证明含有upc2Δecm22Δ的菌株在携带ERG6和ERG28缺失时也不可存活,但在携带ERG3、ERG4或ERG5缺失时则不然。先前已经证明UPC2和ECM22调节酿酒酵母的ERG2和ERG3,并且erg2Δupc2Δecm22Δ三重突变体也是合成致死的。我们使用转座子诱变在upc2Δecm22Δ遗传背景下分离hap1Δ、erg2Δ、erg6Δ和erg28Δ的可存活抑制子。发现编码焦磷酸酶的两个基因(YND1和GDA1)中的突变可抑制其中三个三重突变体的合成致死性,但不能抑制erg2Δupc2Δecm22Δ。我们表明,YND1的缺失与GDA1的缺失一样,会改变鞘脂谱,这表明鞘脂的变化补偿了甾醇组成和丰度变化所产生的致死性。

相似文献

2
A mutation in sphingolipid synthesis suppresses defects in yeast ergosterol metabolism.
Lipids. 2004 Aug;39(8):747-52. doi: 10.1007/s11745-004-1291-6.
3
Synthetically lethal interactions involving loss of the yeast ERG24: the sterol C-14 reductase gene.
Lipids. 2007 Feb;42(1):69-76. doi: 10.1007/s11745-006-1001-4. Epub 2006 Dec 19.
5
Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism.
Eukaryot Cell. 2004 Dec;3(6):1391-7. doi: 10.1128/EC.3.6.1391-1397.2004.
6
The yeast anaerobic response element AR1b regulates aerobic antifungal drug-dependent sterol gene expression.
J Biol Chem. 2013 Dec 6;288(49):35466-77. doi: 10.1074/jbc.M113.526087. Epub 2013 Oct 25.
8
Sorting defects of the tryptophan permease Tat2 in an erg2 yeast mutant.
FEMS Microbiol Lett. 2009 Sep;298(2):218-27. doi: 10.1111/j.1574-6968.2009.01722.x. Epub 2009 Jul 13.
9
Ecm22 and Upc2 regulate yeast mating through control of expression of the mating genes PRM1 and PRM4.
Biochem Biophys Res Commun. 2017 Dec 2;493(4):1485-1490. doi: 10.1016/j.bbrc.2017.10.005. Epub 2017 Oct 3.
10
Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae.
Mol Cell Biol. 2001 Oct;21(19):6395-405. doi: 10.1128/MCB.21.19.6395-6405.2001.

引用本文的文献

1
Exploring adaptation routes to cold temperatures in the Saccharomyces genus.
PLoS Genet. 2025 Feb 19;21(2):e1011199. doi: 10.1371/journal.pgen.1011199. eCollection 2025 Feb.
4
Regulation of Ergosterol Biosynthesis in .
Genes (Basel). 2020 Jul 15;11(7):795. doi: 10.3390/genes11070795.
5
Liquid-Ordered Phase Formation by Mammalian and Yeast Sterols: A Common Feature With Organizational Differences.
Front Cell Dev Biol. 2020 Jun 12;8:337. doi: 10.3389/fcell.2020.00337. eCollection 2020.
6
Role of MCC/Eisosome in Fungal Lipid Homeostasis.
Biomolecules. 2019 Jul 25;9(8):305. doi: 10.3390/biom9080305.
10
Crystallization and preliminary X-ray crystallographic analysis of sterol transcription factor Upc2 from Saccharomyces cerevisiae.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Feb 1;69(Pt 2):147-52. doi: 10.1107/S1744309112051597. Epub 2013 Jan 31.

本文引用的文献

2
3
SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast.
Cell. 2005 Mar 25;120(6):831-42. doi: 10.1016/j.cell.2005.01.012.
4
A mutation in sphingolipid synthesis suppresses defects in yeast ergosterol metabolism.
Lipids. 2004 Aug;39(8):747-52. doi: 10.1007/s11745-004-1291-6.
5
Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism.
Eukaryot Cell. 2004 Dec;3(6):1391-7. doi: 10.1128/EC.3.6.1391-1397.2004.
6
Lipid rafts: structure, function and role in HIV, Alzheimer's and prion diseases.
Expert Rev Mol Med. 2002 Dec 20;4(27):1-22. doi: 10.1017/S1462399402005392.
8
Yeast cells lacking the ARV1 gene harbor defects in sphingolipid metabolism. Complementation by human ARV1.
J Biol Chem. 2002 Sep 27;277(39):36152-60. doi: 10.1074/jbc.M206624200. Epub 2002 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验