Bulynko Yaroslava A, Hsing Lianne C, Mason Robert W, Tremethick David J, Grigoryev Sergei A
Penn State University College of Medicine, Department of Biochemistry and Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA.
Mol Cell Biol. 2006 Jun;26(11):4172-84. doi: 10.1128/MCB.00135-06.
Posttranslational histone modifications and histone variants form a unique epigenetic landscape on mammalian chromosomes where the principal epigenetic heterochromatin markers, trimethylated histone H3(K9) and the histone H2A.Z, are inversely localized in relation to each other. Trimethylated H3(K9) marks pericentromeric constitutive heterochromatin and the male Y chromosome, while H2A.Z is dramatically reduced at these chromosomal locations. Inactivation of a lysosomal and nuclear protease, cathepsin L, causes a global redistribution of epigenetic markers. In cathepsin L knockout cells, the levels of trimethylated H3(K9) decrease dramatically, concomitant with its relocation away from heterochromatin, and H2A.Z becomes enriched at pericentromeric heterochromatin and the Y chromosome. This change is also associated with global relocation of heterochromatin protein HP1 and histone H3 methyltransferase Suv39h1 away from constitutive heterochromatin; however, it does not affect DNA methylation or chromosome segregation, phenotypes commonly associated with impaired histone H3(K9) methylation. Therefore, the key constitutive heterochromatin determinants can dynamically redistribute depending on physiological context but still maintain the essential function(s) of chromosomes. Thus, our data show that cathepsin L stabilizes epigenetic heterochromatin markers on pericentromeric heterochromatin and the Y chromosome through a novel mechanism that does not involve DNA methylation or affect heterochromatin structure and operates on both somatic and sex chromosomes.
翻译后组蛋白修饰和组蛋白变体在哺乳动物染色体上形成独特的表观遗传格局,其中主要的表观遗传异染色质标记,三甲基化组蛋白H3(赖氨酸9)和组蛋白H2A.Z,彼此呈反向定位。三甲基化H3(赖氨酸9)标记着丝粒周围的组成型异染色质和雄性Y染色体,而H2A.Z在这些染色体位置显著减少。溶酶体和核蛋白酶组织蛋白酶L的失活导致表观遗传标记的全局重新分布。在组织蛋白酶L基因敲除细胞中,三甲基化H3(赖氨酸9)的水平显著降低,同时其从异染色质上重新定位,并且H2A.Z在着丝粒周围异染色质和Y染色体上富集。这种变化还与异染色质蛋白HP1和组蛋白H3甲基转移酶Suv39h1从组成型异染色质上的全局重新定位有关;然而,它不影响DNA甲基化或染色体分离,这些表型通常与组蛋白H3(赖氨酸9)甲基化受损有关。因此,关键的组成型异染色质决定因素可以根据生理环境动态重新分布,但仍维持染色体的基本功能。因此,我们的数据表明,组织蛋白酶L通过一种不涉及DNA甲基化或影响异染色质结构且在体细胞和性染色体上均起作用的新机制,稳定着丝粒周围异染色质和Y染色体上的表观遗传异染色质标记。