Suppr超能文献

组蛋白变体 H3.3 的关键残基对于小鼠胚胎中的异染色质形成是必需的。

Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3.

机构信息

Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre national de la recherche scientifique/Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, F-67404 Illkirch, France.

出版信息

Nat Cell Biol. 2010 Sep;12(9):853-62. doi: 10.1038/ncb2089. Epub 2010 Aug 1.

Abstract

In mammals, oocyte fertilization by sperm initiates development. This is followed by epigenetic reprogramming of both parental genomes, which involves the de novo establishment of chromatin domains. In the mouse embryo, methylation of histone H3 establishes an epigenetic asymmetry and is predominant in the maternal pronucleus. However, the roles of differential incorporation of histone H3 variants in the parental chromatin, and of modified residues within specific histone variants, have not been addressed. Here we show that the histone variant H3.3, and in particular lysine 27, is required for the establishment of heterochromatin in the mouse embryo. H3.3 localizes to paternal pericentromeric chromatin during S phase at the time of transcription of pericentromeric repeats. Mutation of H3.3 K27, but not of H3.1 K27, results in aberrant accumulation of pericentromeric transcripts, HP1 mislocalization, dysfunctional chromosome segregation and developmental arrest. This phenotype is rescued by injection of double-stranded RNA (dsRNA) derived from pericentromeric transcripts, indicating a functional link between H3.3K27 and the silencing of such regions by means of an RNA-interference (RNAi) pathway. Our work demonstrates a role for a modifiable residue within a histone-variant-specific context during reprogramming and identifies a novel function for mammalian H3.3 in the initial formation of dsRNA-dependent heterochromatin.

摘要

在哺乳动物中,卵母细胞通过精子受精启动发育。随后,双亲基因组经历表观遗传重编程,涉及新建立染色质结构域。在小鼠胚胎中,组蛋白 H3 的甲基化建立了一种表观遗传不对称性,并且在母本原核中占主导地位。然而,组蛋白 H3 变体在亲本染色质中的差异掺入,以及特定组蛋白变体中修饰残基的作用,尚未得到解决。在这里,我们表明,组蛋白变体 H3.3,特别是赖氨酸 27,对于在小鼠胚胎中建立异染色质是必需的。H3.3 在 S 期定位到父本着丝粒周围染色质,此时着丝粒重复序列转录。H3.3 K27 的突变,但不是 H3.1 K27 的突变,导致着丝粒周围转录本的异常积累、HP1 定位错误、染色体分离功能障碍和发育停滞。这种表型可以通过注射双链 RNA(dsRNA)得到挽救,dsRNA 来源于着丝粒周围的转录本,表明 H3.3K27 与通过 RNA 干扰(RNAi)途径沉默这些区域之间存在功能联系。我们的工作表明,在重编程过程中,组蛋白变体特异性结构域中的一个可修饰残基起作用,并确定了哺乳动物 H3.3 在 dsRNA 依赖性异染色质初始形成中的新功能。

相似文献

1
Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3.
Nat Cell Biol. 2010 Sep;12(9):853-62. doi: 10.1038/ncb2089. Epub 2010 Aug 1.
7
10
Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos.
J Biol Chem. 2018 Mar 9;293(10):3829-3838. doi: 10.1074/jbc.RA117.001150. Epub 2018 Jan 22.

引用本文的文献

1
Dysregulation of heterochromatin caused by genomic structural variants may be central to autism spectrum disorder.
Front Mol Neurosci. 2025 Jun 19;18:1553575. doi: 10.3389/fnmol.2025.1553575. eCollection 2025.
4
Epigenome dynamics in early mammalian embryogenesis.
Nat Rev Genet. 2025 Apr 3. doi: 10.1038/s41576-025-00831-4.
5
Mitofusin 1 Drives Preimplantation Development by Enhancing Chromatin Incorporation of Histone H3.3.
Adv Sci (Weinh). 2025 May;12(18):e2414985. doi: 10.1002/advs.202414985. Epub 2025 Mar 16.
6
Species-specific satellite DNA composition dictates PRC1-mediated pericentric heterochromatin.
bioRxiv. 2025 Mar 25:2024.10.11.617947. doi: 10.1101/2024.10.11.617947.
7
Roles of Histone H2B, H3 and H4 Variants in Cancer Development and Prognosis.
Int J Mol Sci. 2024 Sep 7;25(17):9699. doi: 10.3390/ijms25179699.
9
Histone H3.3 lysine 9 and 27 control repressive chromatin at cryptic enhancers and bivalent promoters.
Nat Commun. 2024 Aug 30;15(1):7557. doi: 10.1038/s41467-024-51785-w.

本文引用的文献

2
PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos.
Nat Genet. 2008 Apr;40(4):411-20. doi: 10.1038/ng.99. Epub 2008 Mar 2.
3
Cell cycle control of centromeric repeat transcription and heterochromatin assembly.
Nature. 2008 Feb 7;451(7179):734-7. doi: 10.1038/nature06561. Epub 2008 Jan 23.
4
5
Transcription and RNA interference in the formation of heterochromatin.
Nature. 2007 May 24;447(7143):399-406. doi: 10.1038/nature05914.
6
Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote.
Chromosoma. 2007 Aug;116(4):403-15. doi: 10.1007/s00412-007-0106-8. Epub 2007 Apr 20.
7
Chromatin modifications and their function.
Cell. 2007 Feb 23;128(4):693-705. doi: 10.1016/j.cell.2007.02.005.
8
New histone incorporation marks sites of UV repair in human cells.
Cell. 2006 Nov 3;127(3):481-93. doi: 10.1016/j.cell.2006.08.049.
10
Chromatin signatures of pluripotent cell lines.
Nat Cell Biol. 2006 May;8(5):532-8. doi: 10.1038/ncb1403. Epub 2006 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验