Hobbs N Thompson, Hilborn Ray
Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado 80523, USA.
Ecol Appl. 2006 Feb;16(1):5-19. doi: 10.1890/04-0645.
Statistical methods emphasizing formal hypothesis testing have dominated the analyses used by ecologists to gain insight from data. Here, we review alternatives to hypothesis testing including techniques for parameter estimation and model selection using likelihood and Bayesian techniques. These methods emphasize evaluation of weight of evidence for multiple hypotheses, multimodel inference, and use of prior information in analysis. We provide a tutorial for maximum likelihood estimation of model parameters and model selection using information theoretics, including a brief treatment of procedures for model comparison, model averaging, and use of data from multiple sources. We discuss the advantages of likelihood estimation, Bayesian analysis, and meta-analysis as ways to accumulate understanding across multiple studies. These statistical methods hold promise for new insight in ecology by encouraging thoughtful model building as part of inquiry, providing a unified framework for the empirical analysis of theoretical models, and by facilitating the formal accumulation of evidence bearing on fundamental questions.
强调形式化假设检验的统计方法主导了生态学家用于从数据中获取见解的分析方法。在此,我们回顾假设检验的替代方法,包括使用似然法和贝叶斯技术进行参数估计和模型选择的技术。这些方法强调对多个假设的证据权重评估、多模型推断以及在分析中使用先验信息。我们提供了一个使用信息论进行模型参数最大似然估计和模型选择的教程,包括对模型比较、模型平均以及使用来自多个来源的数据的程序的简要介绍。我们讨论了似然估计、贝叶斯分析和元分析作为跨多个研究积累理解的方法的优势。这些统计方法有望为生态学带来新的见解,通过鼓励将深思熟虑的模型构建作为探究的一部分,为理论模型的实证分析提供统一框架,并促进对基本问题的证据的正式积累。