Suppr超能文献

揭开多样性的面纱:一种用于拟合相对丰度模型的贝叶斯方法。

Lifting a veil on diversity: a Bayesian approach to fitting relative-abundance models.

作者信息

Golicher Duncan J, O'Hara Robert B, Ruíz-Montoya Lorena, Cayuela Luis

机构信息

Departamento de Ecología y Sistemática Terrestre, El Colegio de la Frontera Sur, Carretera Panamericana y Periférico Sur s/n, C.P. 29290, San Cristóbal de Las Casas, Chiapas México.

出版信息

Ecol Appl. 2006 Feb;16(1):202-12. doi: 10.1890/04-1599.

Abstract

Bayesian methods incorporate prior knowledge into a statistical analysis. This prior knowledge is usually restricted to assumptions regarding the form of probability distributions of the parameters of interest, leaving their values to be determined mainly through the data. Here we show how a Bayesian approach can be applied to the problem of drawing inference regarding species abundance distributions and comparing diversity indices between sites. The classic log series and the lognormal models of relative- abundance distribution are apparently quite different in form. The first is a sampling distribution while the other is a model of abundance of the underlying population. Bayesian methods help unite these two models in a common framework. Markov chain Monte Carlo simulation can be used to fit both distributions as small hierarchical models with shared common assumptions. Sampling error can be assumed to follow a Poisson distribution. Species not found in a sample, but suspected to be present in the region or community of interest, can be given zero abundance. This not only simplifies the process of model fitting, but also provides a convenient way of calculating confidence intervals for diversity indices. The method is especially useful when a comparison of species diversity between sites with different sample sizes is the key motivation behind the research. We illustrate the potential of the approach using data on fruit-feeding butterflies in southern Mexico. We conclude that, once all assumptions have been made transparent, a single data set may provide support for the belief that diversity is negatively affected by anthropogenic forest disturbance. Bayesian methods help to apply theory regarding the distribution of abundance in ecological communities to applied conservation.

摘要

贝叶斯方法将先验知识纳入统计分析。这种先验知识通常局限于关于感兴趣参数概率分布形式的假设,而其值主要通过数据来确定。在此我们展示了贝叶斯方法如何应用于推断物种丰度分布以及比较不同地点多样性指数的问题。经典的对数级数和相对丰度分布的对数正态模型在形式上明显不同。前者是一种抽样分布,而后者是潜在种群丰度的模型。贝叶斯方法有助于将这两个模型统一在一个共同框架中。马尔可夫链蒙特卡罗模拟可用于将这两种分布拟合为具有共同假设的小型层次模型。抽样误差可假定服从泊松分布。在样本中未发现但怀疑存在于感兴趣区域或群落中的物种可赋予零丰度。这不仅简化了模型拟合过程,还为计算多样性指数的置信区间提供了一种便捷方法。当比较不同样本量的地点之间的物种多样性是研究背后的关键动机时,该方法特别有用。我们用墨西哥南部食果蝴蝶的数据说明了该方法的潜力。我们得出结论,一旦所有假设都清晰明了,单个数据集可能会支持多样性受到人为森林干扰负面影响这一观点。贝叶斯方法有助于将关于生态群落中丰度分布的理论应用于实际保护工作。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验