Suppr超能文献

使用增量卡里略和利普曼边界的最优成对和多序列比对。

Optimal sum-of-pairs multiple sequence alignment using incremental Carrillo and Lipman bounds.

作者信息

Konagurthu Arun S, Stuckey Peter J

机构信息

Department of Computer Science and Software Engineering, The University of Melbourne, Victoria, 3010, Australia.

出版信息

J Comput Biol. 2006 Apr;13(3):668-85. doi: 10.1089/cmb.2006.13.668.

Abstract

Alignment of sequences is an important routine in various areas of science, notably molecular biology. Multiple sequence alignment is a computationally hard optimization problem which involves the consideration of different possible alignments in order to find an optimal one, given a measure of goodness of alignments. Dynamic programming algorithms are generally well suited for the search of optimal alignments, but are constrained by unwieldy space requirements for large numbers of sequences. Carrillo and Lipman devised a method that helps to reduce the search space for an optimal alignment under a sum-of-pairs measure using bounds on the scores of its pairwise projections. In this paper, we generalize Carrillo and Lipman bounds and demonstrate a novel approach for finding optimal sum-of-pairs multiple alignments that allows incremental pruning of the optimal alignment search space. This approach can result in a drastic pruning of the final search space polytope (where we search for the optimal alignment) when compared to Carrillo and Lipman's approach and hence allows many runs that are not feasible with the original method.

摘要

序列比对是各个科学领域(尤其是分子生物学)中的一项重要常规操作。多序列比对是一个计算量很大的优化问题,它涉及考虑不同的可能比对,以便在给定比对优劣度量的情况下找到最优比对。动态规划算法通常非常适合搜索最优比对,但对于大量序列来说,会受到繁琐的空间需求的限制。卡里略(Carrillo)和利普曼(Lipman)设计了一种方法,该方法有助于在使用成对投影得分的边界的情况下,在成对和度量下减少最优比对的搜索空间。在本文中,我们推广了卡里略和利普曼的边界,并展示了一种用于找到最优成对和多序列比对的新方法,该方法允许对最优比对搜索空间进行增量剪枝。与卡里略和利普曼的方法相比,这种方法可以大幅剪枝最终搜索空间多面体(我们在其中搜索最优比对)因此允许进行许多原始方法不可行的运行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验