Department of Computer Science, University of Texas at Austin, Austin, TX 78712, USA.
Syst Biol. 2012 Jan;61(1):90-106. doi: 10.1093/sysbio/syr095. Epub 2011 Dec 1.
Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.
对于大型数据集,准确估计系统发育树非常困难,部分原因是只有在多序列比对准确的情况下,系统发育估计方法才准确。已经尝试了对齐和树的共同估计,但目前只有 SATé 在实际时间范围内合理地估计了大型数据集的准确树和对齐(Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564)。在这里,我们对原始 SATé 算法进行了修改,使其在速度、系统发育和对齐准确性方面优于 SATé(我们现在称之为 SATé-I)。SATé-II 使用与 SATé-I 不同的分而治之策略,因此产生的子集更小、更相关;结果,SATé-II 生成了更准确的对齐和树,可以分析更大的数据集,并且比 SATé-I 更高效。通常,SATé 是一种元方法,它将现有的多序列比对方法作为输入参数,并提高该比对方法的质量。SATé-II 增强的比对方法比其未增强的版本准确得多,基于这些改进的比对的树比基于原始比对的树更准确。由于 SATé-I 使用最大似然(ML)方法将空位视为缺失数据来估计树,并且我们发现树/比对的质量与 ML 得分之间存在相关性,因此我们探讨了 SATé 的性能在多大程度上取决于使用 ML 将空位视为缺失数据来确定最佳的树/比对。我们提出了两条证据表明,使用 ML 将空位视为缺失数据来优化对齐和树会产生非常差的结果。首先,我们表明,对于一组未对齐的 DNA 序列,并且输出是在 Jukes-Cantor 模型下最大化似然的那些序列的树和对齐的优化问题在最坏的意义上是无信息的。对于所有输入,所有树都优化似然得分。其次,我们表明,使用 GTR+Gamma ML 来优化对齐和树的贪婪启发式方法可以产生非常差的对齐和树。因此,SATé-II 和 SATé-I 的出色表现并不是因为 ML 被用作选择最佳树/比对的优化标准,而是由于使用了特定的分而治之重排技术。