Banci Lucia, Bertini Ivano, Ciofi-Baffoni Simone, Kandias Nikolaos G, Robinson Nigel J, Spyroulias Georgios A, Su Xun-Cheng, Tottey Stephen, Vanarotti Murugendra
Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8320-5. doi: 10.1073/pnas.0600142103. Epub 2006 May 17.
The thylakoid compartments of plant chloroplasts are a vital destination for copper. Copper is needed to form holo-plastocyanin, which must shuttle electrons between photosystems to convert light into biologically useful chemical energy. Copper can bind tightly to proteins, so it has been hypothesized that copper partitions onto ligand-exchange pathways to reach intracellular locations without inflicting damage en route. The copper metallochaperone Atx1 of chloroplast-related cyanobacteria (ScAtx1) engages in bacterial two-hybrid interactions with N-terminal domains of copper-transporting ATPases CtaA (cell import) and PacS (thylakoid import). Here we visualize copper delivery. The N-terminal domain PacS(N) has a ferredoxin-like fold that forms copper-dependent heterodimers with ScAtx1. Removal of copper, by the addition of the cuprous-ion chelator bathocuproine disulfonate, disrupts this heterodimer, as shown from a reduction of the overall tumbling rate of the protein mixture. The NMR spectral changes of the heterodimer versus the separate proteins reveal that loops 1, 3, and 5 (the carboxyl tail) of the ScAtx1 Cu(I) site switch to an apo-like configuration in the heterodimer. NMR data ((2)J(NH) couplings in the imidazole ring of (15)N ScAtx1 His-61) also show that His-61, bound to copper(I) in Cu(I)ScAtx1, is not coordinated to copper in the heterodimer. A model for the PacS(N)/Cu(I)/ScAtx1 complex is presented. Contact with PacS(N) induces change to the ScAtx1 copper-coordination sphere that drives copper release for thylakoid import. These data also elaborate on the mechanism to keep copper(I) out of the ZiaA(N) ATPase zinc sites.
植物叶绿体的类囊体区室是铜的重要归宿。形成全质体蓝素需要铜,全质体蓝素必须在光系统之间穿梭电子,以将光能转化为生物可用的化学能。铜能与蛋白质紧密结合,因此据推测,铜会沿着配体交换途径分配,以到达细胞内的位置,而不会在途中造成损伤。叶绿体相关蓝细菌(ScAtx1)的铜金属伴侣Atx1与铜转运ATP酶CtaA(细胞内导入)和PacS(类囊体导入)的N端结构域进行细菌双杂交相互作用。在此,我们展示了铜的传递过程。N端结构域PacS(N)具有类似铁氧化还原蛋白的折叠结构,可与ScAtx1形成铜依赖性异二聚体。通过添加亚铜离子螯合剂 bathocuproine disulfonate去除铜,会破坏这种异二聚体,这从蛋白质混合物整体翻滚速率的降低可以看出。异二聚体与单独蛋白质的NMR光谱变化表明,ScAtx1 Cu(I)位点的环1、3和5(羧基末端)在异二聚体中转变为类似脱辅基蛋白的构型。NMR数据((15)N ScAtx1 His-61咪唑环中的(2)J(NH)耦合)还表明,在Cu(I)ScAtx1中与铜(I)结合的His-61在异二聚体中不与铜配位。本文提出了PacS(N)/Cu(I)/ScAtx1复合物的模型。与PacS(N)接触会导致ScAtx1铜配位球发生变化,从而驱动铜释放以进行类囊体导入。这些数据还详细阐述了防止铜(I)进入ZiaA(N) ATP酶锌位点的机制。