Suppr超能文献

使用极端不一致表型设计的关联统计效能。

Statistical power of association using the extreme discordant phenotype design.

作者信息

Zhang Ge, Nebert Daniel W, Chakraborty Ranajit, Jin Li

机构信息

Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH, USA.

出版信息

Pharmacogenet Genomics. 2006 Jun;16(6):401-13. doi: 10.1097/01.fpc.0000204995.99429.0f.

Abstract

BACKGROUND

Selective genotyping has been proven to be an effective design for mapping quantitative trait loci (QTL), either by linkage or by allelic association, wherein the individual trait values can be used as the indices for phenotype selection. It has also been proposed that association studies of dichotomous traits can benefit from such design. When there is no quantitative measurement for phenotype available, cases and/or controls having extreme discordant phenotypes (EDP) can still be selected, based on their exposure status to a drug toxicity or environmental risk factor. The advantage of EDP design is intuitive and it has been successfully used in a number of studies.

METHODS

In this report, we developed a statistical method to calculate the power of EDP methodology, using a mixture model of genotype-specific distributions of a single biallelic susceptibility locus. We also compared the power of three statistical tests commonly used in association studies - including the chi test of allelic frequencies, the chi test of genotype frequencies, and the Armitage trend test. The power of two different EDP designs was evaluated under a range of scenarios.

RESULTS AND CONCLUSION

Our results indicate that the chi test of genotype frequency is a robust, though less powerful, test for single-locus association, and that EDP methodology is a powerful design for genetic association studies - especially those of common diseases caused by quantifiable drug toxicity or environmental risk factors.

摘要

背景

选择性基因分型已被证明是一种有效的设计,可用于通过连锁或等位基因关联来定位数量性状基因座(QTL),其中个体性状值可作为表型选择的指标。也有人提出,二分性状的关联研究可从这种设计中受益。当没有可用的表型定量测量时,基于病例和/或对照对药物毒性或环境风险因素的暴露状态,仍可选择具有极端不一致表型(EDP)的个体。EDP设计的优势显而易见,并且已在多项研究中成功应用。

方法

在本报告中,我们开发了一种统计方法,使用单个双等位基因易感基因座的基因型特异性分布的混合模型来计算EDP方法的效能。我们还比较了关联研究中常用的三种统计检验的效能,包括等位基因频率的卡方检验、基因型频率的卡方检验和阿米特奇趋势检验。在一系列场景下评估了两种不同EDP设计的效能。

结果与结论

我们的结果表明,基因型频率的卡方检验对于单基因座关联是一种稳健但效能较低的检验,并且EDP方法对于基因关联研究是一种有效的设计,尤其是对于由可量化的药物毒性或环境风险因素引起的常见疾病的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验