Jung Klaus, Quast Karsten, Gannoun Ali, Urfer Wolfgang
Department of Statistics, University of Dortmund, D-44221 Dortmund, Germany.
Biom J. 2006 Apr;48(2):245-54. doi: 10.1002/bimj.200510189.
DNA-microarrays find broad employment in biochemical research. This technology allows the monitoring of the expression levels of thousands of genes at the same time. Often, the goal of a microarray study is to find differentially expressed genes in two different types of tissue, for example normal and cancerous. Multiple hypothesis testing is a useful statistical tool for such studies. One approach using multiple hypothesis testing is nonparametric analysis for replicated microarray experiments. In this paper we present an improved version of this method. We also show how p-values are calculated for all significant genes detected with this testing procedure. All algorithms were implemented in an R-package, and instructions on it's use are included. The package can be downloaded at http://www.statistik.unidortmund.de/de/content/einrichtungen/lehrstuehle/personen/jung.html
DNA微阵列在生化研究中得到广泛应用。这项技术能够同时监测数千个基因的表达水平。通常,微阵列研究的目标是在两种不同类型的组织(例如正常组织和癌组织)中找到差异表达的基因。多重假设检验是此类研究中一种有用的统计工具。一种使用多重假设检验的方法是对重复微阵列实验进行非参数分析。在本文中,我们展示了该方法的一个改进版本。我们还展示了如何针对通过此测试程序检测到的所有显著基因计算p值。所有算法都在一个R包中实现,并包含了使用说明。该包可从http://www.statistik.unidortmund.de/de/content/einrichtungen/lehrstuehle/personen/jung.html下载