Ploner Alexander, Calza Stefano, Gusnanto Arief, Pawitan Yudi
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden.
Bioinformatics. 2006 Mar 1;22(5):556-65. doi: 10.1093/bioinformatics/btk013. Epub 2005 Dec 20.
MOTIVATION: The false discovery rate (fdr) is a key tool for statistical assessment of differential expression (DE) in microarray studies. Overall control of the fdr alone, however, is not sufficient to address the problem of genes with small variance, which generally suffer from a disproportionally high rate of false positives. It is desirable to have an fdr-controlling procedure that automatically accounts for gene variability. METHODS: We generalize the local fdr as a function of multiple statistics, combining a common test statistic for assessing DE with its standard error information. We use a non-parametric mixture model for DE and non-DE genes to describe the observed multi-dimensional statistics, and estimate the distribution for non-DE genes via the permutation method. We demonstrate this fdr2d approach for simulated and real microarray data. RESULTS: The fdr2d allows objective assessment of DE as a function of gene variability. We also show that the fdr2d performs better than commonly used modified test statistics. AVAILABILITY: An R-package OCplus containing functions for computing fdr2d() and other operating characteristics of microarray data is available at http://www.meb.ki.se/~yudpaw.
动机:错误发现率(fdr)是微阵列研究中差异表达(DE)统计评估的关键工具。然而,仅对fdr进行总体控制不足以解决方差较小的基因问题,这些基因通常会出现不成比例的高假阳性率。需要一种能自动考虑基因变异性的fdr控制程序。 方法:我们将局部fdr推广为多个统计量的函数,将用于评估DE的常见检验统计量与其标准误差信息相结合。我们使用非参数混合模型来描述DE基因和非DE基因的观测多维统计量,并通过置换法估计非DE基因的分布。我们针对模拟和真实微阵列数据展示了这种fdr2d方法。 结果:fdr2d能够根据基因变异性对DE进行客观评估。我们还表明,fdr2d的性能优于常用的修正检验统计量。 可用性:可从http://www.meb.ki.se/~yudpaw获取一个R包OCplus,其中包含用于计算fdr2d()以及微阵列数据其他操作特征的函数。
Bioinformatics. 2006-3-1
Bioinformatics. 2005-10-15
Bioinformatics. 2006-12-15
Bioinformatics. 2005-8-1
Bioinformatics. 2008-5-1
Bioinformatics. 2005-5-1
Bioinformatics. 2005-6-15
BMC Bioinformatics. 2021-10-13
Front Cell Dev Biol. 2021-6-11
Metabolites. 2021-1-14
Bioinformatics. 2019-11-1