文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微阵列研究的多维局部错误发现率

Multidimensional local false discovery rate for microarray studies.

作者信息

Ploner Alexander, Calza Stefano, Gusnanto Arief, Pawitan Yudi

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden.

出版信息

Bioinformatics. 2006 Mar 1;22(5):556-65. doi: 10.1093/bioinformatics/btk013. Epub 2005 Dec 20.


DOI:10.1093/bioinformatics/btk013
PMID:16368770
Abstract

MOTIVATION: The false discovery rate (fdr) is a key tool for statistical assessment of differential expression (DE) in microarray studies. Overall control of the fdr alone, however, is not sufficient to address the problem of genes with small variance, which generally suffer from a disproportionally high rate of false positives. It is desirable to have an fdr-controlling procedure that automatically accounts for gene variability. METHODS: We generalize the local fdr as a function of multiple statistics, combining a common test statistic for assessing DE with its standard error information. We use a non-parametric mixture model for DE and non-DE genes to describe the observed multi-dimensional statistics, and estimate the distribution for non-DE genes via the permutation method. We demonstrate this fdr2d approach for simulated and real microarray data. RESULTS: The fdr2d allows objective assessment of DE as a function of gene variability. We also show that the fdr2d performs better than commonly used modified test statistics. AVAILABILITY: An R-package OCplus containing functions for computing fdr2d() and other operating characteristics of microarray data is available at http://www.meb.ki.se/~yudpaw.

摘要

动机:错误发现率(fdr)是微阵列研究中差异表达(DE)统计评估的关键工具。然而,仅对fdr进行总体控制不足以解决方差较小的基因问题,这些基因通常会出现不成比例的高假阳性率。需要一种能自动考虑基因变异性的fdr控制程序。 方法:我们将局部fdr推广为多个统计量的函数,将用于评估DE的常见检验统计量与其标准误差信息相结合。我们使用非参数混合模型来描述DE基因和非DE基因的观测多维统计量,并通过置换法估计非DE基因的分布。我们针对模拟和真实微阵列数据展示了这种fdr2d方法。 结果:fdr2d能够根据基因变异性对DE进行客观评估。我们还表明,fdr2d的性能优于常用的修正检验统计量。 可用性:可从http://www.meb.ki.se/~yudpaw获取一个R包OCplus,其中包含用于计算fdr2d()以及微阵列数据其他操作特征的函数。

相似文献

[1]
Multidimensional local false discovery rate for microarray studies.

Bioinformatics. 2006-3-1

[2]
Bias in the estimation of false discovery rate in microarray studies.

Bioinformatics. 2005-10-15

[3]
Estimation of false discovery proportion under general dependence.

Bioinformatics. 2006-12-15

[4]
Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data.

BMC Bioinformatics. 2005-2-10

[5]
Practical FDR-based sample size calculations in microarray experiments.

Bioinformatics. 2005-8-1

[6]
Unequal group variances in microarray data analyses.

Bioinformatics. 2008-5-1

[7]
Empirical Bayes screening of many p-values with applications to microarray studies.

Bioinformatics. 2005-5-1

[8]
twilight; a Bioconductor package for estimating the local false discovery rate.

Bioinformatics. 2005-6-15

[9]
Quick calculation for sample size while controlling false discovery rate with application to microarray analysis.

Bioinformatics. 2007-3-15

[10]
A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data.

Bioinformatics. 2005-12-1

引用本文的文献

[1]
Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications.

Mol Psychiatry. 2025-4

[2]
Leveraging auxiliary data from arbitrary distributions to boost GWAS discovery with Flexible cFDR.

PLoS Genet. 2021-10

[3]
GproDIA enables data-independent acquisition glycoproteomics with comprehensive statistical control.

Nat Commun. 2021-10-18

[4]
Circall: fast and accurate methodology for discovery of circular RNAs from paired-end RNA-sequencing data.

BMC Bioinformatics. 2021-10-13

[5]
Transcriptomic Signature of Human Embryonic Thyroid Reveals Transition From Differentiation to Functional Maturation.

Front Cell Dev Biol. 2021-6-11

[6]
Comprehensive Comparative Analysis of Local False Discovery Rate Control Methods.

Metabolites. 2021-1-14

[7]
MetPC: Metabolite Pipeline Consisting of Metabolite Identification and Biomarker Discovery Under the Control of Two-Dimensional FDR.

Metabolites. 2019-5-25

[8]
Cell-level somatic mutation detection from single-cell RNA sequencing.

Bioinformatics. 2019-11-1

[9]
Thresholding of cryo-EM density maps by false discovery rate control.

IUCrJ. 2019-1-1

[10]
Estimating the local false discovery rate via a bootstrap solution to the reference class problem.

PLoS One. 2018-11-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索