Salceda Javier, Fernández Xavier, Roca Joaquim
Institut de Biología Molecular de Barcelona, CSIC, Barcelona, Spain.
EMBO J. 2006 Jun 7;25(11):2575-83. doi: 10.1038/sj.emboj.7601142. Epub 2006 May 18.
Eukaryotic topoisomerases I and II efficiently remove helical tension in naked DNA molecules. However, this activity has not been examined in nucleosomal DNA, their natural substrate. Here, we obtained yeast minichromosomes holding DNA under (+) helical tension, and incubated them with topoisomerases. We show that DNA supercoiling density can rise above +0.04 without displacement of the histones and that the typical nucleosome topology is restored upon DNA relaxation. However, in contrast to what is observed in naked DNA, topoisomerase II relaxes nucleosomal DNA much faster than topoisomerase I. The same effect occurs in cell extracts containing physiological dosages of topoisomeraseI and II. Apparently, the DNA strand-rotation mechanism of topoisomerase I does not efficiently relax chromatin, which imposes barriers for DNA twist diffusion. Conversely, the DNA cross-inversion mechanism of topoisomerase II is facilitated in chromatin, which favor the juxtaposition of DNA segments. We conclude that topoisomerase II is the main modulator of DNA topology in chromatin fibers. The nonessential topoisomerase I then assists DNA relaxation where chromatin structure impairs DNA juxtaposition but allows twist diffusion.
真核生物拓扑异构酶I和II能有效消除裸露DNA分子中的螺旋张力。然而,尚未在它们的天然底物核小体DNA中检测到这种活性。在这里,我们获得了处于(+)螺旋张力下的含有DNA的酵母微型染色体,并将它们与拓扑异构酶一起孵育。我们发现,DNA超螺旋密度可以升至+0.04以上而组蛋白不会移位,并且DNA松弛后典型的核小体拓扑结构得以恢复。然而,与在裸露DNA中观察到的情况相反,拓扑异构酶II使核小体DNA松弛的速度比拓扑异构酶I快得多。在含有生理剂量拓扑异构酶I和II的细胞提取物中也会出现同样的效果。显然,拓扑异构酶I的DNA链旋转机制不能有效地使染色质松弛,这对DNA扭曲扩散形成了障碍。相反,拓扑异构酶II的DNA交叉反转机制在染色质中更容易进行,这有利于DNA片段的并列。我们得出结论,拓扑异构酶II是染色质纤维中DNA拓扑结构的主要调节因子。非必需的拓扑异构酶I则在染色质结构损害DNA并列但允许扭曲扩散的情况下协助DNA松弛。