Zheng Xing, Hemmady Sameer, Antonsen Thomas M, Anlage Steven M, Ott Edward
Department of Physics, University of Maryland, College Park, Maryland 20742, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 2):046208. doi: 10.1103/PhysRevE.73.046208. Epub 2006 Apr 25.
In wave chaotic scattering, statistical fluctuations of the scattering matrix S and the impedance matrix Z depend both on universal properties and on nonuniversal details of how the scatterer is coupled to external channels. This paper considers the impedance and scattering variance ratios, Xi(z) and Xi(s), where Xi(z) = Var[Z(ij)]/{Var[Z(ii)]Var[Z(jj)]}1/2, Xi(s) = Var[S(ij)]/{Var[S(ii)]Var[S(jj)]}1/2, and Var[.] denotes variance. Xi(z) is shown to be a universal function of distributed losses within the scatterer. That is, Xi(z) is independent of nonuniversal coupling details. This contrasts with s for which universality applies only in the large loss limit. Explicit results are given for Xi(z) for time reversal symmetric and broken time reversal symmetric systems. Experimental tests of the theory are presented using data taken from scattering measurements on a chaotic microwave cavity.
在波混沌散射中,散射矩阵S和阻抗矩阵Z的统计涨落既取决于普适性质,也取决于散射体与外部通道耦合方式的非普适细节。本文考虑阻抗和散射方差比Xi(z)和Xi(s),其中Xi(z) = Var[Z(ij)]/{Var[Z(ii)]Var[Z(jj)]}1/2,Xi(s) = Var[S(ij)]/{Var[S(ii)]Var[S(jj)]}1/2,且Var[.]表示方差。结果表明,Xi(z)是散射体内分布损耗的普适函数。也就是说,Xi(z)与非普适耦合细节无关。这与Xi(s)形成对比,对于Xi(s),普适性仅在大损耗极限情况下适用。给出了时间反演对称和破缺时间反演对称系统的Xi(z)的显式结果。利用从混沌微波腔散射测量中获取的数据,对该理论进行了实验测试。