Liang Tao, Witten Thomas A
The James Franck Institute and the Department of Physics, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 2):046604. doi: 10.1103/PhysRevE.73.046604. Epub 2006 Apr 10.
In this paper we report numerically observed spontaneous vanishing of mean curvature on a developable cone made by pushing a thin elastic sheet into a circular container [E. Cerda, S. Chaieb, F. Melo, and L. Mahadevan, Nature (London) 401 46 (1999)]. We show that this feature is independent of thickness of the sheet, the supporting radius, and the amount of deflection. Several variants of the developable cone are studied to examine the necessary conditions that lead to the vanishing of mean curvature. It is found that the presence of appropriate amount of radial stress is necessary. The developable cone geometry somehow produces the right amount of radial stress to induce just enough radial curvature to cancel the conical azimuthal curvature. In addition, the circular symmetry of supporting container edge plays an important role. With an elliptical supporting edge, the radial curvature overcompensates the azimuthal curvature near the minor axis and undercompensates near the major axis. Our numerical finding is verified by a crude experiment using a reflective plastic sheet. We expect this finding to have broad importance in describing the general geometrical properties of forced crumpling of thin sheets.
在本文中,我们报告了通过将薄弹性片材推入圆形容器制成的可展锥面上平均曲率的数值观测自发消失现象[E. 塞尔达、S. 沙伊卜、F. 梅洛和L. 马哈德万,《自然》(伦敦)401, 46 (1999)]。我们表明,这一特征与片材厚度、支撑半径和挠曲量无关。研究了可展锥面的几种变体,以检验导致平均曲率消失的必要条件。发现存在适量的径向应力是必要的。可展锥面几何形状以某种方式产生适量的径向应力,以诱导刚好足够的径向曲率来抵消锥形方位曲率。此外,支撑容器边缘的圆对称性起着重要作用。对于椭圆形支撑边缘,径向曲率在短轴附近过度补偿方位曲率,而在长轴附近补偿不足。我们的数值发现通过使用反光塑料片材的粗略实验得到了验证。我们预计这一发现对于描述薄板强制起皱的一般几何特性具有广泛的重要性。