Suppr超能文献

弯曲薄板中的新月形奇点与应力集中:可展锥的力学原理

Crescent singularities and stress focusing in a buckled thin sheet: mechanics of developable cones.

作者信息

Chaïeb S, Melo F

机构信息

Departamento de Física de la Universidad de Santiago, Avenida Ecuador 3493, Casilla 307, Correo 2, Santiago, Chile.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Nov;60(5 Pt B):6091-103. doi: 10.1103/physreve.60.6091.

Abstract

The localization of deformation is a simple consequence of the fact that bending a thin sheet is energetically cheaper than stretching it. In this paper we investigate conical singularities that appear on a crumpled sheet and called developable cones (d cones). We found that for a sample of a finite thickness the singularity is never pointlike but has a spatial extension in the form of a crescent. A further deformation of the d cone leads to a transition to a plastic deformation equivalent to a decrease in the singularity size characterized from curvature and profile analysis. The crescent radius of curvature is measured both at small deformations and at large deformations. It is found that, during the buckling process, the curvature of the crescent exhibits two different scalings versus the deformation. From the cone profile, we measured the reaction force of the plate to deformation; and from force measurements, the energy that is necessary to create the singularity is characterized.

摘要

变形的局部化是一个简单的结果,即弯曲薄板在能量上比拉伸它更便宜。在本文中,我们研究了出现在褶皱薄板上的锥形奇点,称为可展锥(d锥)。我们发现,对于有限厚度的样品,奇点从不呈点状,而是具有月牙形的空间延伸。d锥的进一步变形会导致向塑性变形的转变,这相当于奇点尺寸的减小,通过曲率和轮廓分析来表征。在小变形和大变形时都测量了月牙形的曲率半径。结果发现,在屈曲过程中,月牙形的曲率相对于变形呈现出两种不同的标度。从锥轮廓中,我们测量了板对变形的反作用力;通过力的测量,表征了产生奇点所需的能量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验