Candelier F, Angilella J R
Nancy-Université (LEMTA, CNRS UMR 7563), 2 avenue de la Forêt de Haye, 54504 Vandoeuvre-les-Nancy Cedex, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 2):047301. doi: 10.1103/PhysRevE.73.047301. Epub 2006 Apr 14.
We analyze the explicit contribution of fluid inertia and fluid unsteadiness to the force acting on a solid sphere moving in a vertical solid-body rotation flow, in the limit of small Reynolds and Taylor numbers. This problem can be thought of as a test case where the flow induced by the particle is both unsteady (in the laboratory frame) and convected by the unperturbed flow. Many authors assume that the contributions of these two effects can be approximately superposed, and postulate that the particle motion equation is composed of the classical Boussinesq-Basset-Oseen equation (obtained by neglecting the fluid inertia) plus an additive lift force. In the present paper the simplicity of the unperturbed flow enables one to calculate analytically the explicit contribution of each term appearing in the perturbed flow equation (by using matched asymptotic expansions). Our results show how the convective terms and the unsteady term do contribute to the particle drag and lift coefficients in a very complex and nonadditive manner.
在小雷诺数和泰勒数的极限情况下,我们分析了流体惯性和流体非定常性对作用于在垂直刚体旋转流中运动的固体球体上的力的明确贡献。这个问题可以被看作是一个测试案例,其中粒子诱导的流动在实验室坐标系中既是非定常的,又由未受扰动的流动对流。许多作者假设这两种效应的贡献可以近似叠加,并假定粒子运动方程由经典的布辛涅斯克 - 巴塞特 - 奥森方程(通过忽略流体惯性得到)加上一个附加升力组成。在本文中,未受扰动流动的简单性使得人们能够通过使用匹配渐近展开式来解析计算扰动流动方程中出现的每一项的明确贡献。我们的结果表明,对流项和非定常项如何以非常复杂且非相加的方式对粒子阻力和升力系数产生贡献。