Suppr超能文献

通过不完整、非理想的分子单层控制半导体/金属结势垒。

Controlling semiconductor/metal junction barriers by incomplete, nonideal molecular monolayers.

作者信息

Haick Hossam, Ambrico Marianna, Ligonzo Teresa, Tung Raymond T, Cahen David

机构信息

Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

J Am Chem Soc. 2006 May 31;128(21):6854-69. doi: 10.1021/ja058224a.

Abstract

We study how partial monolayers of molecular dipoles at semiconductor/metal interfaces can affect electrical transport across these interfaces, using a series of molecules with systematically varying dipole moment, adsorbed on n-GaAs, prior to Au or Pd metal contact deposition, by indirect evaporation or as "ready-made" pads. From analyses of the molecularly modified surfaces, we find that molecular coverage is poorer on low- than on high-doped n-GaAs. Electrical charge transport across the resulting interfaces was studied by current-voltage-temperature, internal photoemission, and capacitance-voltage measurements. The data were analyzed and compared with numerical simulations of interfaces that present inhomogeneous barriers for electron transport across them. For high-doped GaAs, we confirm that only the former, molecular dipole-dependent barrier is found. Although no clear molecular effects appear to exist with low-doped n-GaAs, those data are well explained by two coexisting barriers for electron transport, one with clear systematic dependence on molecular dipole (molecule-controlled regions) and a constant one (molecule-free regions, pinholes). This explains why directly observable molecular control over the barrier height is found with high-doped GaAs: there, the monolayer pinholes are small enough for their electronic effect not to be felt (they are "pinched off"). We conclude that molecules can control and tailor electronic devices need not form high-quality monolayers, bind chemically to both electrodes, or form multilayers to achieve complete surface coverage. Furthermore, the problem of stability during electron transport is significantly alleviated with molecular control via partial molecule coverage, as most current flows now between, rather than via, the molecules.

摘要

我们研究半导体/金属界面处分子偶极子的部分单分子层如何影响跨这些界面的电传输,通过间接蒸发或作为“现成”垫,在沉积Au或Pd金属接触之前,将一系列具有系统变化偶极矩的分子吸附在n型砷化镓上。通过对分子修饰表面的分析,我们发现低掺杂n型砷化镓上的分子覆盖率比高掺杂的要差。通过电流-电压-温度、内光电发射和电容-电压测量研究了跨所得界面的电荷传输。对数据进行了分析,并与呈现不均匀电子传输势垒的界面的数值模拟进行了比较。对于高掺杂砷化镓,我们确认只发现了前者,即依赖分子偶极子的势垒。虽然低掺杂n型砷化镓似乎没有明显的分子效应,但这些数据可以用两个共存的电子传输势垒很好地解释,一个对分子偶极子有明显的系统依赖性(分子控制区域),另一个是恒定的(无分子区域、针孔)。这就解释了为什么在高掺杂砷化镓上能直接观察到分子对势垒高度的控制:在那里,单分子层针孔足够小,以至于感觉不到它们的电子效应(它们被“夹断”)。我们得出结论,分子可以控制和定制电子器件,无需形成高质量的单分子层,与两个电极进行化学结合,或形成多层以实现完全的表面覆盖。此外,通过部分分子覆盖实现分子控制,电子传输过程中的稳定性问题得到了显著缓解,因为现在大多数电流在分子之间流动,而不是通过分子流动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验