Schwartz J W, Piston D, DeFelice L J
Imaging Center, Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA.
Handb Exp Pharmacol. 2006(175):23-57. doi: 10.1007/3-540-29784-7_2.
Cotransporters use energy stored in Na+ or H+ gradients to transport neurotransmitters or other substrates against their own gradient. Cotransport is rapid and efficient, and at synapses it helps terminate signaling. Cotransport in norepinephrine (NET), epinephrine (EpiT), dopamine (DAT), and serotonin (SERT) transporters couples downhill Na+ flux to uphill transmitter flux. NETs, for example, attenuate signaling at adrenergic synapses by efficiently clearing NE from the synaptic cleft, thus preparing the synapse for the next signal. Transport inhibition with tricyclic antidepressants prolongs neurotransmitter presence in the synaptic cleft, potentially alleviating symptoms of depression. Transport inhibition with cocaine or amphetamine, which respectively block or replace normal transport, may result in hyperactivity. Little is known about the kinetic interactions of substrates or drugs with transporters, largely because the techniques that have been successful in discovering trans- porter agonists and antagonists do not yield detailed kinetic information. Mechanistic data are for the most part restricted to global parameters, such as Km and Vmax, measured from large populations of transporter molecules averaged over thousands of cells. Three relatively new techniques used in transporter research are electrophysiology, amperometry, and microfluorometry. This review focuses on fluorescence-based methodologies, which--unlike any other technique-permit the simultaneous measurement of binding and transport. Microfluorometry provides unique insights into binding kinetics and transport mechanisms from a quantitative analysis of fluorescence data. Here we demonstrate how to quantify the number of bound substrate molecules, the number of transported substrate molecules, and the kinetics of substrate binding to individual transporters. Although we describe experiments on a specific neurotransmitter transporter, these methods are applicable to other membrane proteins.
协同转运蛋白利用储存在Na⁺或H⁺梯度中的能量,逆着自身梯度转运神经递质或其他底物。协同转运快速且高效,在突触处有助于终止信号传导。去甲肾上腺素(NET)、肾上腺素(EpiT)、多巴胺(DAT)和5-羟色胺(SERT)转运体的协同转运将Na⁺的顺梯度流动与递质的逆梯度流动偶联起来。例如,NETs通过有效地从突触间隙清除去甲肾上腺素(NE)来减弱肾上腺素能突触处的信号传导,从而为下一个信号准备好突触。用三环类抗抑郁药抑制转运可延长神经递质在突触间隙中的存在时间,有可能缓解抑郁症状。用可卡因或苯丙胺抑制转运,它们分别阻断或取代正常转运,可能导致多动。关于底物或药物与转运体的动力学相互作用知之甚少,这主要是因为在发现转运体激动剂和拮抗剂方面取得成功的技术无法提供详细的动力学信息。机理数据在很大程度上仅限于从数千个细胞平均得到的大量转运体分子测量得到的全局参数,如Km和Vmax。转运体研究中使用的三种相对较新的技术是电生理学、安培测量法和显微荧光测定法。本综述重点关注基于荧光的方法,与任何其他技术不同,该方法允许同时测量结合和转运。显微荧光测定法通过对荧光数据的定量分析,为结合动力学和转运机制提供了独特的见解。在这里,我们展示了如何量化结合的底物分子数量、转运的底物分子数量以及底物与单个转运体结合的动力学。虽然我们描述了针对特定神经递质转运体的实验,但这些方法适用于其他膜蛋白。