Gensanne D, Josse G, Lagarde J M, Vincensini D
Laboratoire de Chimie Bioinorganique Médicale, Imagerie thérapeutique et diagnostique, JE 2400-CNRS FR 2599, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France.
Phys Med Biol. 2006 Jun 7;51(11):2843-55. doi: 10.1088/0031-9155/51/11/011. Epub 2006 May 24.
Measuring spin-spin relaxation times (T2) by quantitative MR imaging represents a potentially efficient tool to evaluate the physicochemical properties of various media. However, noise in MR images is responsible for uncertainties in the determination of T2 relaxation times, which limits the accuracy of parametric tissue analysis. The required signal-to-noise ratio (SNR) depends on the T2 relaxation behaviour specific to each tissue. Thus, we have previously shown that keeping the uncertainty in T2 measurements within a limit of 10% implies that SNR values be greater than 100 and 300 for mono- and biexponential T2 relaxation behaviours, respectively. Noise reduction can be obtained either by increasing the voxel size (i.e., at the expense of spatial resolution) or by using high sensitivity dedicated surface coils (which allows us to increase SNR without deteriorating spatial resolution in an excessive manner). However, surface coil sensitivity is heterogeneous, i.e., it--and hence SNR--decreases with increasing depth, and the more so as the coil radius is smaller. The use of surface coils is therefore limited to the analysis of superficial structure such as the hypodermic tissue analysed here. The aim of this work was to determine the maximum limits of spatial resolution and depth compatible with reliable in vivo T2 quantitative MR images using dedicated surface coils available on various clinical MR scanners. The average thickness of adipose tissue is around 15 mm, and the results obtained have shown that obtaining reliable biexponential relaxation analysis requires a minimum achievable voxel size of 13 mm3 for a conventional volume birdcage coil and only of 1.7 mm3 for the smallest available surface coil (23 mm in diameter). Further improvement in spatial resolution allowing us to detect low details in MR images without deteriorating parametric T2 images can be obtained by image filtering. By using the non-linear selective blurring filter described in a previous work, the voxel size was reduced to 0.8 mm3, allowing us to detect microstructures such as fibrous septae while preserving precision in T2 measurements. This paper provides practical information allowing us to perform reliable T2 quantitative MR micro images. High resolution imaging with dedicated surface coils, which is only well-suited to near surface organs, might lead to highly valuable results in this context, especially to analyse the hypodermis involved in the lipodystrophy seen in patients with human immuno-deficiency virus (HIV).
通过定量磁共振成像测量自旋-自旋弛豫时间(T2)是评估各种介质物理化学性质的一种潜在有效工具。然而,磁共振图像中的噪声导致了T2弛豫时间测定的不确定性,这限制了参数化组织分析的准确性。所需的信噪比(SNR)取决于每种组织特有的T2弛豫行为。因此,我们之前已经表明,将T2测量的不确定性控制在10%以内意味着单指数和双指数T2弛豫行为的SNR值分别大于100和300。可以通过增大体素大小(即以牺牲空间分辨率为代价)或使用高灵敏度专用表面线圈(这使我们能够在不过度降低空间分辨率的情况下提高SNR)来实现降噪。然而,表面线圈的灵敏度是不均匀的,即它以及因此的SNR会随着深度增加而降低,并且线圈半径越小,这种情况越明显。因此,表面线圈的使用仅限于分析诸如本文所分析的皮下组织等浅表结构。这项工作的目的是确定使用各种临床磁共振扫描仪上可用的专用表面线圈获得可靠的体内T2定量磁共振图像时,空间分辨率和深度的最大极限。脂肪组织的平均厚度约为15毫米,获得的结果表明,对于传统的容积鸟笼线圈,获得可靠的双指数弛豫分析需要的最小可实现体素大小为13立方毫米,而对于最小的可用表面线圈(直径23毫米),仅为1.7立方毫米。通过图像滤波可以进一步提高空间分辨率,使我们能够在不降低参数化T2图像质量的情况下检测磁共振图像中的细微细节。通过使用先前工作中描述的非线性选择性模糊滤波器,体素大小减小到了0.8立方毫米,使我们能够检测到诸如纤维间隔等微观结构,同时保持T2测量的精度。本文提供了实用信息,使我们能够进行可靠的T2定量磁共振显微成像。使用仅适用于浅表器官的专用表面线圈进行高分辨率成像,在这种情况下可能会产生非常有价值的结果,特别是用于分析人类免疫缺陷病毒(HIV)患者中出现的脂肪营养不良所涉及的皮下组织。