Song S-H, Dick B, Penzkofer A, Pokorny R, Batschauer A, Essen L-O
Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053 Regensburg, Germany.
J Photochem Photobiol B. 2006 Oct 2;85(1):1-16. doi: 10.1016/j.jphotobiol.2006.03.007. Epub 2006 May 24.
The blue light photoreceptor cryptochrome 3 (cry3) from Arabidopsis thaliana was characterized at room temperature in vitro in aqueous solution by optical absorption and emission spectroscopic studies. The protein non-covalently binds the chromophores flavin adenine dinucleotide (FAD) and N5,N10-methenyl-5,6,7,8-tetrahydrofolate (MTHF). In the dark-adapted state of cry3, the bound FAD is present in the oxidized form (FAD(ox), ca. 38.5%), in the semiquinone form (FADH., ca. 5%), and in the fully reduced neutral form (FAD(red)H2) or fully reduced anionic form (FAD(red)H-, ca. 55%). Some amount of FAD (ca. 1.5%) in the oxidized state remains unbound probably caused by chromophore release and/or denaturation. Förster-type energy transfer from MTHF to FAD(ox) is observed. Photo-excitation reversibly modifies the protein conformation causing a slight rise of the MTHF absorption strength and an increase of the MTHF fluorescence efficiency (efficient protein conformation photo-cycle). Additionally there occurs reversible reduction of bound FAD(ox) to FAD(red)H2 (or FAD(red)H-, FAD(ox) photo-cycle of moderate efficiency), reversible reduction of FADH. to FAD(red)H2 (or FAD(red)H-, FADH. photo-cycle of high efficiency), and modification of re-oxidable FAD(red)H2 (or FAD(red)H-) to permanent FAD(red)H2 (or FAD(red)H-) with low quantum efficiency. Photo-excitation of MTHF causes the reversible formation of a MTHF species (MTHF', MTHF photo-cycle, moderate quantum efficiency) with slow recovery to the initial dark state, and also the formation of an irreversible photoproduct (MTHF'').
通过光吸收和发射光谱研究,在室温下于体外水溶液中对来自拟南芥的蓝光光感受器隐花色素3(cry3)进行了表征。该蛋白质非共价结合发色团黄素腺嘌呤二核苷酸(FAD)和N5,N10-亚甲基-5,6,7,8-四氢叶酸(MTHF)。在cry3的暗适应状态下,结合的FAD以氧化形式(FAD(ox),约38.5%)、半醌形式(FADH·,约5%)以及完全还原的中性形式(FAD(red)H2)或完全还原的阴离子形式(FAD(red)H-,约55%)存在。一些处于氧化态的FAD(约1.5%)未结合,这可能是由于发色团释放和/或变性所致。观察到从MTHF到FAD(ox)的福斯特型能量转移。光激发可逆地改变蛋白质构象,导致MTHF吸收强度略有上升以及MTHF荧光效率增加(高效蛋白质构象光循环)。此外,还发生结合的FAD(ox)可逆还原为FAD(red)H2(或FAD(red)H-,中等效率的FAD(ox)光循环)、FADH·可逆还原为FAD(red)H2(或FAD(red)H-,高效的FADH·光循环)以及可再氧化的FAD(red)H2(或FAD(red)H-)转变为永久性FAD(red)H2(或FAD(red)H-),量子效率较低。MTHF的光激发导致形成一种MTHF物种(MTHF',MTHF光循环,中等量子效率),其缓慢恢复到初始暗状态,同时还形成一种不可逆光产物(MTHF'')。