Suppr超能文献

Hemodynamic effects of nicotine in canine skeletal muscle.

作者信息

Crystal G J

机构信息

Department of Anesthesiology, Illinois Masonic Medical Center, Chicago 60657.

出版信息

Proc Soc Exp Biol Med. 1991 Apr;196(4):421-7. doi: 10.3181/00379727-196-43210.

Abstract

Studies were conducted in 36 artificially ventilated, anesthetized dogs to clarify hemodynamic effects of nicotine in resting gracilis muscle. In Series 1, effects of intravenous nicotine (36 micrograms/kg/min) were evaluated in (i) intact muscles (Condition 1), (ii) denervated muscles (Condition 2), (iii) denervated muscles following local alpha-adrenergic blockade (Condition 3), (iv) denervated muscles following combined local alpha- and beta-adrenergic blockade (Condition 4), and (v) intact muscles with aortic pressure maintained constant (Condition 5). In Series 2, nicotine was infused directly into the gracilis artery at a rate of 3.6 micrograms/kg/min. Muscle blood flow was obtained with an electromagnetic flowmeter and used to calculate vascular resistance and oxygen consumption (Fick equation). Plasma catecholamine levels were determined with a radioenzymatic method. Intravenous nicotine doubled mean aortic pressure under Conditions 1-4. In intact and denervated muscles (Conditions 1 and 2) proportional increases in vascular resistance, reflective of vasoconstriction, held blood flow constant. Muscle oxygen consumption was unchanged. alpha-Adrenergic blockade with phenoxybenzamine following denervation (Condition 3) converted muscle vasoconstriction to vasodilation during nicotine infusion. Additional beta-adrenergic blockade (Condition 4) restored muscle vasoconstriction. Nicotine-induced muscle vasoconstriction was maintained under controlled pressure (Condition 5). Intravenous nicotine significantly increased plasma catecholamine levels. Intra-arterial infusions of nicotine (Series 2) caused no hemodynamic changes in muscle. In conclusion, intravenous nicotine caused vasoconstriction in muscle, which was not due to reduced metabolic demand, pressure-flow autoregulation, or a direct [corrected] effect on vascular smooth muscle, but to stimulation of alpha-adrenergic receptors. Following denervation, this vasoconstriction was maintained by elevated plasma catecholamines. alpha-Adrenergic blockade unmasked nicotine-induced vasodilation mediated by beta-adrenergic receptors, whereas combined alpha- and beta-adrenergic blockade unmasked nicotine-induced vasoconstriction by a nonadrenergic mechanism.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验