Cookson Scott, Ostroff Natalie, Pang Wyming Lee, Volfson Dmitri, Hasty Jeff
Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA.
Mol Syst Biol. 2005;1:2005.0024. doi: 10.1038/msb4100032. Epub 2005 Nov 22.
Recent progress in reconstructing gene regulatory networks has established a framework for a quantitative description of the dynamics of many important cellular processes. Such a description will require novel experimental techniques that enable the generation of time-series data for the governing regulatory proteins in a large number of individual living cells. Here, we utilize microfabrication to construct a Tesla microchemostat that permits single-cell fluorescence imaging of gene expression over many cellular generations. The device is used to capture and constrain asymmetrically dividing or motile cells within a trapping region and to deliver nutrients and regulate the cellular population within this region. We illustrate the operation of the microchemostat with Saccharomyces cerevisiae and explore the evolution of single-cell gene expression and cycle time as a function of generation. Our findings highlight the importance of novel assays for quantifying the dynamics of gene expression and cellular growth, and establish a methodology for exploring the effects of gene expression on long-term processes such as cellular aging.
基因调控网络重建的最新进展为定量描述许多重要细胞过程的动态建立了一个框架。这样的描述将需要新颖的实验技术,以便能够为大量单个活细胞中起调控作用的调节蛋白生成时间序列数据。在这里,我们利用微制造技术构建了一个特斯拉微型恒化器,它可以在多个细胞世代中对基因表达进行单细胞荧光成像。该装置用于在捕获区域内捕获和限制不对称分裂或运动的细胞,并提供营养物质并调节该区域内的细胞群体。我们用酿酒酵母说明了微型恒化器的操作,并探索了单细胞基因表达和周期时间随世代的演变。我们的研究结果突出了用于量化基因表达和细胞生长动态的新颖检测方法的重要性,并建立了一种探索基因表达对细胞衰老等长期过程影响的方法。