Suppr超能文献

N-乙酰天门冬氨酸作为谷氨酸的储存库。

N-acetylaspartate as a reservoir for glutamate.

作者信息

Clark Joseph F, Doepke Amos, Filosa Jessica A, Wardle Robert L, Lu Aigang, Meeker Timothy J, Pyne-Geithman Gail J

机构信息

Department of Neurology, University of Cincinnati, Cincinnati, OH 45267-0536, USA.

出版信息

Med Hypotheses. 2006;67(3):506-12. doi: 10.1016/j.mehy.2006.02.047. Epub 2006 May 26.

Abstract

N-acetylaspartate (NAA) is an intermediary metabolite that is found in relatively high concentrations in the human brain. More specifically, NAA is so concentrated in the neurons that it generates one of the most visible peaks in nuclear magnetic resonance (NMR) spectra, thus allowing NAA to serve as "a neuronal marker". However, to date there is no generally accepted physiological (primary) role for NAA. Another molecule that is found at similar concentrations in the brain is glutamate. Glutamate is an amino acid and neurotransmitter with numerous functions in the brain. We propose that NAA, a six-carbon amino acid derivative, is converted to glutamate (five carbons) in an energetically favorable set of reactions. This set of reactions starts when aspartoacylase converts the six carbons of NAA to aspartate and acetate, which are subsequently converted to oxaloacetate and acetyl CoA, respectively. Aspartylacylase is found in astrocytes and oligodendrocytes. In the mitochondria, oxaloacetate and acetyl CoA are combined to form citrate. Requiring two steps, the citrate is oxidized in the Kreb's cycle to alpha-ketoglutarate, producing NADH. Finally, alpha-ketoglutarate is readily converted to glutamate by transaminating the alpha-keto to an amine. The resulting glutamate can be used by multiple cells types to provide optimal brain functional and structural needs. Thus, the abundant NAA in neuronal tissue can serve as a large reservoir for replenishing glutamate in times of rapid or dynamic signaling demands and stress. This is beneficial in that proper levels of glutamate serve critical functions for neurons, astrocytes, and oligodendrocytes including their survival. In conclusion, we hypothesize that NAA conversion to glutamate is a logical and favorable use of this highly concentrated metabolite. It is important for normal brain function because of the brain's relatively unique metabolic demands and metabolite fluxes. Knowing that NAA is converted to glutamate will be important for better understanding myriad neurodegenerative diseases such as Canavan's Disease and Multiple Sclerosis, to name a few. Future studies to demonstrate the chemical, metabolic and pathological links between NAA and glutamate will support this hypothesis.

摘要

N-乙酰天门冬氨酸(NAA)是一种中间代谢产物,在人脑中含量相对较高。更具体地说,NAA在神经元中高度浓缩,以至于在核磁共振(NMR)光谱中产生最明显的峰值之一,因此NAA可作为“神经元标志物”。然而,迄今为止,NAA尚无被普遍接受的生理(主要)作用。在大脑中以相似浓度存在的另一种分子是谷氨酸。谷氨酸是一种氨基酸和神经递质,在大脑中具有多种功能。我们提出,NAA这种六碳氨基酸衍生物,通过一系列能量有利的反应转化为谷氨酸(五碳)。这一系列反应始于天冬氨酸酰基转移酶将NAA的六个碳原子转化为天冬氨酸和乙酸盐,随后它们分别转化为草酰乙酸和乙酰辅酶A。天冬氨酸酰基转移酶存在于星形胶质细胞和少突胶质细胞中。在线粒体中,草酰乙酸和乙酰辅酶A结合形成柠檬酸。柠檬酸需要两步在三羧酸循环中氧化为α-酮戊二酸,产生还原型辅酶I(NADH)。最后,α-酮戊二酸通过将α-酮基转变成氨基而很容易转化为谷氨酸。生成的谷氨酸可被多种细胞类型利用,以满足大脑最佳的功能和结构需求。因此,神经元组织中丰富的NAA可作为一个巨大的储备库,在快速或动态信号需求及应激时补充谷氨酸。这是有益的,因为适当水平的谷氨酸对神经元、星形胶质细胞和少突胶质细胞的关键功能包括它们的存活起着重要作用。总之,我们假设NAA向谷氨酸的转化是对这种高度浓缩代谢产物的合理且有利的利用。由于大脑相对独特的代谢需求和代谢物通量,这对正常脑功能很重要。了解NAA转化为谷氨酸对于更好地理解多种神经退行性疾病(如卡纳万病和多发性硬化症等)将具有重要意义。未来证明NAA与谷氨酸之间化学、代谢和病理联系的研究将支持这一假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验