Olatona Olusola A, Sterben Sydney P, Kansakar Sahan B S, Symes Aviva J, Liaudanskaya Volha
Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States.
Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, United States.
Front Cell Neurosci. 2025 May 9;19:1570596. doi: 10.3389/fncel.2025.1570596. eCollection 2025.
Mitochondria play a critical role in brain energy metabolism, cellular signaling, and homeostasis, making their dysfunction a key driver of secondary injury progression in traumatic brain injury (TBI). This review explores the relationship between mitochondrial bioenergetics, metabolism, oxidative stress, and neuroinflammation in the post-TBI brain. Mitochondrial dysfunction disrupts adenosine triphosphate (ATP) production, exacerbates calcium dysregulation, and generates reactive oxygen species, triggering a cascade of neuronal damage and neurodegenerative processes. Moreover, damaged mitochondria release damage-associated molecular patterns (DAMPs) such as mitochondrial DNA (mtDNA), Cytochrome C, and ATP, triggering inflammatory pathways that amplify tissue injury. We discuss the metabolic shifts that occur post-TBI, including the transition from oxidative phosphorylation to glycolysis and the consequences of metabolic inflexibility. Potential therapeutic interventions targeting mitochondrial dynamics, bioenergetic support, and inflammation modulation are explored, highlighting emerging strategies such as mitochondrial-targeted antioxidants, metabolic substrate supplementation, and pharmacological regulators of mitochondrial permeability transition pores. Understanding these mechanisms is crucial for developing novel therapeutic approaches to mitigate neurodegeneration and enhance recovery following brain trauma.
线粒体在脑能量代谢、细胞信号传导和体内平衡中起着关键作用,使其功能障碍成为创伤性脑损伤(TBI)继发性损伤进展的关键驱动因素。本综述探讨了TBI后脑中线粒体生物能量学、代谢、氧化应激和神经炎症之间的关系。线粒体功能障碍会破坏三磷酸腺苷(ATP)的产生,加剧钙调节异常,并产生活性氧,引发一系列神经元损伤和神经退行性过程。此外,受损的线粒体释放损伤相关分子模式(DAMPs),如线粒体DNA(mtDNA)、细胞色素C和ATP,触发炎症途径,放大组织损伤。我们讨论了TBI后发生的代谢变化,包括从氧化磷酸化到糖酵解的转变以及代谢灵活性受损的后果。探讨了针对线粒体动力学、生物能量支持和炎症调节的潜在治疗干预措施,重点介绍了线粒体靶向抗氧化剂、代谢底物补充和线粒体通透性转换孔的药理调节剂等新兴策略。了解这些机制对于开发减轻神经退行性变和促进脑损伤后恢复的新型治疗方法至关重要。