Suppr超能文献

在多个强度下扫描微阵列可增强对差异表达基因的发现。

Scanning microarrays at multiple intensities enhances discovery of differentially expressed genes.

作者信息

Skibbe David S, Wang Xiujuan, Zhao Xuefeng, Borsuk Lisa A, Nettleton Dan, Schnable Patrick S

机构信息

Molecular, Cellular and Developmental Biology Program, Iowa State University Ames, IA 50011, USA.

出版信息

Bioinformatics. 2006 Aug 1;22(15):1863-70. doi: 10.1093/bioinformatics/btl270. Epub 2006 May 26.

Abstract

MOTIVATION

Scanning parameters are often overlooked when optimizing microarray experiments. A scanning approach that extends the dynamic data range by acquiring multiple scans of different intensities has been developed.

RESULTS

Data from each of three scan intensities (low, medium, high) were analyzed separately using multiple scan and linear regression approaches to identify and compare the sets of genes that exhibit statistically significant differential expression. In the multiple scan approach only one-third of the differentially expressed genes were shared among the three intensities, and each scan intensity identified unique sets of differentially expressed genes. The set of differentially expressed genes from any one scan amounted to < 70% of the total number of genes identified in at least one scan. The average signal intensity of genes that exhibited statistically significant changes in expression was highest for the low-intensity scan and lowest for the high-intensity scan, suggesting that low-intensity scans may be best for detecting expression differences in high-signal genes, while high-intensity scans may be best for detecting expression differences in low-signal genes. Comparison of the differentially expressed genes identified in the multiple scan and linear regression approaches revealed that the multiple scan approach effectively identifies a subset of statistically significant genes that linear regression approach is unable to identify. Quantitative RT-PCR (qRT-PCR) tests demonstrated that statistically significant differences identified at all three scan intensities can be verified.

AVAILABILITY

The data presented can be viewed at http://www.ncbi.nlm.nih.gov/geo/ under GEO accession no. GSE3017.

摘要

动机

在优化微阵列实验时,扫描参数常常被忽视。现已开发出一种通过获取不同强度的多次扫描来扩展动态数据范围的扫描方法。

结果

使用多次扫描和线性回归方法分别分析了三种扫描强度(低、中、高)下的数据,以识别和比较显示出具有统计学显著差异表达的基因集。在多次扫描方法中,三种强度之间只有三分之一的差异表达基因是相同的,并且每种扫描强度都识别出了独特的差异表达基因集。来自任何一次扫描的差异表达基因集占至少在一次扫描中识别出的基因总数的比例小于70%。在表达上表现出统计学显著变化的基因的平均信号强度在低强度扫描中最高,在高强度扫描中最低,这表明低强度扫描可能最适合检测高信号基因中的表达差异,而高强度扫描可能最适合检测低信号基因中的表达差异。对多次扫描和线性回归方法中识别出的差异表达基因进行比较后发现,多次扫描方法有效地识别出了线性回归方法无法识别的具有统计学意义的基因子集。定量逆转录聚合酶链反应(qRT-PCR)测试表明,在所有三种扫描强度下识别出的统计学显著差异都可以得到验证。

可用性

所呈现的数据可在http://www.ncbi.nlm.nih.gov/geo/ 上查看,GEO登录号为GSE3017。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验