Daskalakis Antonis, Cavouras Dionisis, Bougioukos Panagiotis, Kostopoulos Spiros, Glotsos Dimitris, Kalatzis Ioannis, Kagadis George C, Argyropoulos Christos, Nikiforidis George
Medical Image Processing and Analysis Group, Laboratory of Medical Physics, School of Medicine, University of Patras, 265 04 Rio, Greece.
Bioinformatics. 2007 Sep 1;23(17):2265-72. doi: 10.1093/bioinformatics/btm337. Epub 2007 Jun 28.
One of the major factors that complicate the task of microarray image analysis is that microarray images are distorted by various types of noise. In this study a robust framework is proposed, designed to take into account the effect of noise in microarray images in order to assist the demanding task of microarray image analysis. The proposed framework, incorporates in the microarray image processing pipeline a novel combination of spot adjustable image analysis and processing techniques and consists of the following stages: (1) gridding for facilitating spot identification, (2) clustering (unsupervised discrimination between spot and background pixels) applied to spot image for automatic local noise assessment, (3) modeling of local image restoration process for spot image conditioning (adjustable wiener restoration using an empirically determined degradation function), (4) automatic spot segmentation employing seeded-region-growing, (5) intensity extraction and (6) assessment of the reproducibility (real data) and the validity (simulated data) of the extracted gene expression levels.
Both simulated and real microarray images were employed in order to assess the performance of the proposed framework against well-established methods implemented in publicly available software packages (Scanalyze and SPOT). Regarding simulated images, the novel combination of techniques, introduced in the proposed framework, rendered the detection of spot areas and the extraction of spot intensities more accurate. Furthermore, on real images the proposed framework proved of better stability across replicates. Results indicate that the proposed framework improves spots' segmentation and, consequently, quantification of gene expression levels.
All algorithms were implemented in Matlab (The Mathworks, Inc., Natick, MA, USA) environment. The codes that implement microarray gridding, adaptive spot restoration and segmentation/intensity extraction are available upon request. Supplementary results and the simulated microarray images used in this study are available for download from: ftp://users:bioinformatics@mipa.med.upatras.gr.
Supplementary data are available at Bioinformatics online.
使微阵列图像分析任务复杂化的主要因素之一是微阵列图像会受到各种噪声的干扰。在本研究中,提出了一个稳健的框架,旨在考虑微阵列图像中噪声的影响,以辅助微阵列图像分析这项艰巨的任务。所提出的框架在微阵列图像处理流程中纳入了一种新颖的点可调图像分析与处理技术组合,包括以下阶段:(1) 网格化以促进点识别;(2) 聚类(对斑点图像进行无监督的斑点与背景像素区分)用于自动局部噪声评估;(3) 对斑点图像进行局部图像恢复过程建模以进行图像预处理(使用经验确定的退化函数进行可调维纳恢复);(4) 采用种子区域生长法进行自动斑点分割;(5) 强度提取;(6) 评估提取的基因表达水平的可重复性(真实数据)和有效性(模拟数据)。
使用模拟和真实的微阵列图像来评估所提出框架相对于公开可用软件包(Scanalyze和SPOT)中实现的成熟方法的性能。对于模拟图像,所提出框架中引入的新颖技术组合使斑点区域的检测和斑点强度的提取更加准确。此外,对于真实图像,所提出的框架在重复实验中表现出更好的稳定性。结果表明,所提出的框架改善了斑点的分割,从而提高了基因表达水平的定量分析。
所有算法均在Matlab(美国马萨诸塞州纳蒂克市The Mathworks公司)环境中实现。实现微阵列网格化、自适应斑点恢复以及分割/强度提取的代码可应要求提供。本研究中使用的补充结果和模拟微阵列图像可从以下网址下载:ftp://users:bioinformatics@mipa.med.upatras.gr。
补充数据可在《生物信息学》在线获取。