Suppr超能文献

与严重急性呼吸综合征冠状病毒复制复合体相关的膜泡的超微结构与起源

Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex.

作者信息

Snijder Eric J, van der Meer Yvonne, Zevenhoven-Dobbe Jessika, Onderwater Jos J M, van der Meulen Jannes, Koerten Henk K, Mommaas A Mieke

机构信息

Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.

出版信息

J Virol. 2006 Jun;80(12):5927-40. doi: 10.1128/JVI.02501-05.

Abstract

The RNA replication complexes of mammalian positive-stranded RNA viruses are generally associated with (modified) intracellular membranes, a feature thought to be important for creating an environment suitable for viral RNA synthesis, recruitment of host components, and possibly evasion of host defense mechanisms. Here, using a panel of replicase-specific antisera, we have analyzed the earlier stages of severe acute respiratory syndrome coronavirus (SARS-CoV) infection in Vero E6 cells, in particular focusing on the subcellular localization of the replicase and the ultrastructure of the associated membranes. Confocal immunofluorescence microscopy demonstrated the colocalization, throughout infection, of replicase cleavage products containing different key enzymes for SARS-CoV replication. Electron microscopy revealed the early formation and accumulation of typical double-membrane vesicles, which probably carry the viral replication complex. The vesicles appear to be fragile, and their preservation was significantly improved by using cryofixation protocols and freeze substitution methods. In immunoelectron microscopy, the virus-induced vesicles could be labeled with replicase-specific antibodies. Opposite to what was described for mouse hepatitis virus, we did not observe the late relocalization of specific replicase subunits to the presumed site of virus assembly, which was labeled using an antiserum against the viral membrane protein. This conclusion was further supported using organelle-specific marker proteins and electron microscopy. Similar morphological studies and labeling experiments argued against the previously proposed involvement of the autophagic pathway as the source for the vesicles with which the replicase is associated and instead suggested the endoplasmic reticulum to be the most likely donor of the membranes that carry the SARS-CoV replication complex.

摘要

哺乳动物正链RNA病毒的RNA复制复合体通常与(修饰的)细胞内膜相关联,这一特征被认为对于创造适合病毒RNA合成的环境、招募宿主成分以及可能逃避宿主防御机制很重要。在此,我们使用一组复制酶特异性抗血清,分析了Vero E6细胞中严重急性呼吸综合征冠状病毒(SARS-CoV)感染的早期阶段,尤其关注复制酶的亚细胞定位以及相关膜的超微结构。共聚焦免疫荧光显微镜显示,在整个感染过程中,含有SARS-CoV复制关键酶的复制酶裂解产物共定位。电子显微镜揭示了典型双膜囊泡的早期形成和积累,这些囊泡可能携带病毒复制复合体。这些囊泡似乎很脆弱,通过使用冷冻固定方案和冷冻置换方法,其保存情况得到了显著改善。在免疫电子显微镜中,病毒诱导的囊泡可用复制酶特异性抗体标记。与小鼠肝炎病毒的情况相反,我们没有观察到特定复制酶亚基后期重新定位到假定的病毒组装位点,该位点用抗病毒膜蛋白的抗血清标记。使用细胞器特异性标记蛋白和电子显微镜进一步支持了这一结论。类似的形态学研究和标记实验反驳了先前提出的自噬途径参与作为与复制酶相关的囊泡来源的观点,而是表明内质网最有可能是携带SARS-CoV复制复合体的膜的供体。

相似文献

3
Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins.
J Virol. 2004 Sep;78(18):9977-86. doi: 10.1128/JVI.78.18.9977-9986.2004.
6
The intracellular sites of early replication and budding of SARS-coronavirus.
Virology. 2007 May 10;361(2):304-15. doi: 10.1016/j.virol.2006.11.027. Epub 2007 Jan 8.
8
A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis.
PLoS Biol. 2020 Jun 8;18(6):e3000715. doi: 10.1371/journal.pbio.3000715. eCollection 2020 Jun.

引用本文的文献

2
SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity.
Nat Commun. 2025 May 12;16(1):4393. doi: 10.1038/s41467-025-59475-x.
3
RAB5 is a host dependency factor for the generation of SARS-CoV-2 replication organelles.
mBio. 2025 May 14;16(5):e0331424. doi: 10.1128/mbio.03314-24. Epub 2025 Apr 1.
4
A coronavirus assembly inhibitor that targets the viral membrane protein.
Nature. 2025 Apr;640(8058):514-523. doi: 10.1038/s41586-025-08773-x. Epub 2025 Mar 26.
5
Processing of genomic RNAs by Dicer in bat cells limits SARS-CoV-2 replication.
Virol J. 2025 Mar 25;22(1):86. doi: 10.1186/s12985-025-02693-y.
6
Anti-interferon armamentarium of human coronaviruses.
Cell Mol Life Sci. 2025 Mar 13;82(1):116. doi: 10.1007/s00018-025-05605-z.
9

本文引用的文献

1
Nidovirus transcription: how to make sense...?
J Gen Virol. 2006 Jun;87(Pt 6):1403-1421. doi: 10.1099/vir.0.81611-0.
4
Mutational analysis of the SARS virus Nsp15 endoribonuclease: identification of residues affecting hexamer formation.
J Mol Biol. 2005 Nov 11;353(5):1106-17. doi: 10.1016/j.jmb.2005.09.007. Epub 2005 Oct 3.
5
Wrapping things up about virus RNA replication.
Traffic. 2005 Nov;6(11):967-77. doi: 10.1111/j.1600-0854.2005.00339.x.
8
In situ detection of starvation-induced autophagy.
J Histochem Cytochem. 2006 Jan;54(1):85-96. doi: 10.1369/jhc.5A6743.2005. Epub 2005 Sep 7.
9
Molecular interactions in the assembly of coronaviruses.
Adv Virus Res. 2005;64:165-230. doi: 10.1016/S0065-3527(05)64006-7.
10
Subversion of cellular autophagosomal machinery by RNA viruses.
PLoS Biol. 2005 May;3(5):e156. doi: 10.1371/journal.pbio.0030156. Epub 2005 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验