Suppr超能文献

用于选择与受损半月板大小和形状最匹配的半月板同种异体移植物的新算法。

New algorithm for selecting meniscal allografts that best match the size and shape of the damaged meniscus.

作者信息

Donahue Tommy L Haut, Hull Maury L, Howell Stephen M

机构信息

Department of Mechanical Engineering, Michigan Technological University, Houghton, Michigan 49931, USA.

出版信息

J Orthop Res. 2006 Jul;24(7):1535-43. doi: 10.1002/jor.20155.

Abstract

Procedures used by tissue banks in selecting meniscal allografts that will best restore normal contact pressure at the time of surgical implantation into a recipient's knee should be improved. Our objective was to develop regression equations that use dimensions measured from magnetic resonance (MR) images of the contralateral knee to predict values of important meniscal parameters of the injured knee. Another objective was to incorporate these equations into an algorithm for selecting allografts that best match the size and shape of the damaged meniscus (either medial or lateral). In each of 10 knee specimens, four transverse and six cross-sectional parameters of the medial and lateral menisci were quantified from measurements obtained using a laser-based, noncontacting, 3-D coordinate digitizing system. In each of 10 contralateral knee specimens, six transverse and 24 cross-sectional (i.e., perpendicular to transverse plane) dimensions were measured for the medial and lateral menisci from MR images of each knee specimen. Simple linear regression equations related these 10 parameters to each of 38 predictor variables determined from magnetic resonance imaging (MRI) dimensions and the best regression equation for each parameter was identified. Requiring only 9 of the 30 dimensions as predictor variables, the best regression equations predicted 8 of 10 and 10 of 10 medial and lateral menisci parameters, respectively, with R2 values>0.500. The algorithm for selecting meniscal allografts involves: collecting an inventory of meniscal allografts and determining the 10 meniscus parameter values for all allografts in the inventory; measuring the dimensions as required from MRI scans of the uninjured knee; using the dimensions as inputs to the regression equations to predict values of meniscal parameters; and selecting the meniscal allograft from the inventory that best matches the predicted values of meniscal parameters. Selecting meniscal allografts using our new algorithm may enable allografts to better meet the clinical objectives of meniscal transplantation, which are to reduce pain in some patients following meniscal resection and to inhibit the degeneration of the articular cartilage.

摘要

组织库在选择半月板同种异体移植体时所采用的程序应加以改进,这些移植体要能在手术植入受者膝关节时最好地恢复正常接触压力。我们的目标是建立回归方程,利用对侧膝关节磁共振(MR)图像测量的尺寸来预测受伤膝关节重要半月板参数的值。另一个目标是将这些方程纳入一种算法,以选择与受损半月板(内侧或外侧)尺寸和形状最匹配的同种异体移植体。在10个膝关节标本中,使用基于激光的非接触式三维坐标数字化系统所获得的测量值,对内侧和外侧半月板的四个横向参数和六个横截面参数进行了量化。在10个对侧膝关节标本中,从每个膝关节标本的MR图像测量内侧和外侧半月板的六个横向尺寸和24个横截面(即垂直于横向平面)尺寸。简单线性回归方程将这10个参数与从磁共振成像(MRI)尺寸确定的38个预测变量中的每一个相关联,并确定了每个参数的最佳回归方程。最佳回归方程仅需要30个尺寸中的9个作为预测变量,分别预测了10个内侧和外侧半月板参数中的8个和10个,决定系数(R2)值>0.500。选择半月板同种异体移植体的算法包括:收集半月板同种异体移植体清单,并确定清单中所有同种异体移植体的10个半月板参数值;根据未受伤膝关节的MRI扫描按要求测量尺寸;将这些尺寸作为回归方程的输入来预测半月板参数值;以及从清单中选择与半月板参数预测值最匹配的半月板同种异体移植体。使用我们的新算法选择半月板同种异体移植体可能会使同种异体移植体更好地满足半月板移植的临床目标,即减轻一些患者半月板切除后的疼痛并抑制关节软骨退变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验