Svetec M, Kralj S, Bradac Z, Zumer S
Regional Development Agency Ltd., Lendavska 5a, 9000 Murska Sobota, Slovenia.
Eur Phys J E Soft Matter. 2006 May;20(1):71-9. doi: 10.1140/epje/i2005-10120-9. Epub 2006 May 2.
The annihilation of the nematic hedgehog and anti-hedgehog within an infinite cylinder of radius R is studied. The semi-microscopic lattice-type model and Brownian molecular dynamics are used. We distinguish among the i) early pre-collision, ii) late pre-collision, iii) early post-collision, and iv) late post-collision stages. In the pre-collision stage our results agree qualitatively with the existing experimental observations and also continuum-type simulations. The core of each defect exhibits a ring-like structure, where the ring axis is set perpendicular to the cylinder symmetry axis. For xi(0)d/(2R) > 1 the interaction between defects is negligible, where xi(0)d describes the initial separation of defects. Consequently, the defects annihilate within the simulation time window for xi(0)d/(2R) < 1. For close enough defects their separation scales as xi(d) [see text] (t(c)- t)(0.4+/-0.1), where t(c) stands for the collision time. In elastically anisotropic medium the hedgehog is faster than the anti-hedgehog. In the early pre-collision stage the defects can be treated as point-like particles, possessing inherent core structure, that interact via the nematic director field. In the late pre-collision stage the cores reflect the interaction between defects. After the collision a charge-less ring structure is first formed. In the early post-collision stage the ring adopts an essentially untwisted circular structure of the radius xi(r). In the late post-collision stage we observe two qualitatively different scenarios. For mu = xi(r)/R < mu(c) approximately 0.25 the ring collapses leading to the escaped radial equilibrium structure. For mu > mu(c) the chargeless ring triggers the nucleation growth into the planar polar structure with line defects.
研究了半径为R的无限长圆柱体内向列型刺猬缺陷和反刺猬缺陷的湮灭。采用了半微观晶格型模型和布朗分子动力学方法。我们区分了以下几个阶段:i)早期碰撞前阶段、ii)晚期碰撞前阶段、iii)早期碰撞后阶段和iv)晚期碰撞后阶段。在碰撞前阶段,我们的结果在定性上与现有的实验观测结果以及连续介质类型的模拟结果一致。每个缺陷的核心呈现出环状结构,环轴垂直于圆柱对称轴。当ξ(0)d/(2R) > 1时,缺陷之间的相互作用可忽略不计,其中ξ(0)d描述了缺陷的初始间距。因此,当ξ(0)d/(2R) < 1时,缺陷在模拟时间窗口内湮灭。对于足够接近的缺陷,它们的间距按ξ(d) [见正文] (t(c) - t)(0.4±0.1) 缩放,其中t(c)代表碰撞时间。在弹性各向异性介质中,刺猬缺陷比反刺猬缺陷移动得更快。在早期碰撞前阶段,缺陷可被视为具有固有核心结构的点状粒子,它们通过向列型指向矢场相互作用。在晚期碰撞前阶段,核心反映了缺陷之间的相互作用。碰撞后首先形成一个无电荷的环状结构。在早期碰撞后阶段,环呈现出半径为ξ(r)的基本无扭曲的圆形结构。在晚期碰撞后阶段,我们观察到两种性质不同的情况。当μ = ξ(r)/R < μ(c) ≈ 0.25时,环塌缩导致径向平衡结构逸出。当μ > μ(c)时,无电荷环引发成核生长为具有线缺陷的平面极性结构。