Suppr超能文献

Proton transfer-induced conformational changes and melting in designed peptides in the gas phase.

作者信息

Kohtani Motoya, Jones Thaddeus C, Sudha Rajagopalan, Jarrold Martin F

机构信息

Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA.

出版信息

J Am Chem Soc. 2006 Jun 7;128(22):7193-7. doi: 10.1021/ja056745s.

Abstract

The conformations of protonated RA15K, RA20K and RA15H (R = arginine, A = alanine, K = lysine, and H = histidine) have been examined in the gas phase as a function of temperature. These peptides were designed so that intramolecular proton transfer will trigger conformational changes between a helix (proton sequestered at the C-terminus) and globule (proton sequestered at the N-terminus). Kinetically controlled structural transitions occur below 400 K (from helix to globule for RA15H, and from globule to helix for RA15K and RA20K). As the temperature is raised, the compact globule found at room temperature expands, accesses more configurations, and becomes entropically favored. At around 500 K, the RA15K and RA20K helices undergo a melting transition. The transition is broad, as expected for a phase transition in a finite system, and becomes narrower as the peptide size increases. In the helical conformation, the two basic residues are well separated; as a result, the proton transfer necessary to drive the melting transition probably involves a mobile proton. For doubly protonated RA15K, a dumbbell-like conformation (resulting from repulsion between the two protonated basic residues) is found at high temperature.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验