Suppr超能文献

扩散张量图像中张量形态分类的统计框架。

A statistical framework for the classification of tensor morphologies in diffusion tensor images.

作者信息

Zhu Hongtu, Xu Dongrong, Raz Amir, Hao Xuejun, Zhang Heping, Kangarlu Alayar, Bansal Ravi, Peterson Bradley S

机构信息

MRI Unit, Department of Psychiatry, Columbia University Medical Center, USA.

出版信息

Magn Reson Imaging. 2006 Jun;24(5):569-82. doi: 10.1016/j.mri.2006.01.004. Epub 2006 Mar 20.

Abstract

Tractography algorithms for diffusion tensor (DT) images consecutively connect directions of maximal diffusion across neighboring DTs in order to reconstruct the 3-dimensional trajectories of white matter tracts in vivo in the human brain. The performance of these algorithms, however, is strongly influenced by the amount of noise in the images and by the presence of degenerate tensors-- i.e., tensors in which the direction of maximal diffusion is poorly defined. We propose a simple procedure for the classification of tensor morphologies that uses test statistics based on invariant measures of DTs, such as fractional anisotropy, while accounting for the effects of noise on tensor estimates. Examining DT images from seven human subjects, we demonstrate that this procedure validly classifies DTs at each voxel into standard types (nondegenerate DTs, as well as degenerate oblate, prolate or isotropic DTs), and we provide preliminary estimates for the prevalence and spatial distribution of degenerate tensors in these brains. We also show that the P values for test statistics are more sensitive tools for classifying tensor morphologies than are invariant measures of anisotropy alone.

摘要

用于扩散张量(DT)图像的纤维束成像算法通过依次连接相邻DT中最大扩散方向,来重建人类大脑中活体白质纤维束的三维轨迹。然而,这些算法的性能受到图像噪声量以及退化张量(即最大扩散方向定义不明确的张量)的强烈影响。我们提出了一种简单的张量形态分类方法,该方法使用基于DT不变量测度(如分数各向异性)的检验统计量,同时考虑噪声对张量估计的影响。通过检查七名人类受试者的DT图像,我们证明该方法能够有效地将每个体素处的DT分类为标准类型(非退化DT以及退化的扁长、长球或各向同性DT),并提供了这些大脑中退化张量的发生率和空间分布的初步估计。我们还表明,与单独的各向异性不变量测度相比,检验统计量的P值是用于张量形态分类的更敏感工具。

相似文献

1
A statistical framework for the classification of tensor morphologies in diffusion tensor images.
Magn Reson Imaging. 2006 Jun;24(5):569-82. doi: 10.1016/j.mri.2006.01.004. Epub 2006 Mar 20.
2
Using perturbation theory to compute the morphological similarity of diffusion tensors.
IEEE Trans Med Imaging. 2008 May;27(5):589-607. doi: 10.1109/TMI.2007.912391.
3
Measurement of fiber orientation distributions using high angular resolution diffusion imaging.
Magn Reson Med. 2005 Nov;54(5):1194-206. doi: 10.1002/mrm.20667.
4
Monte Carlo-based diffusion tensor tractography with a geometrically corrected voxel-centre connecting method.
Phys Med Biol. 2009 Feb 21;54(4):1009-33. doi: 10.1088/0031-9155/54/4/013. Epub 2009 Jan 16.
6
Unbiased white matter atlas construction using diffusion tensor images.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):211-8. doi: 10.1007/978-3-540-75759-7_26.
8
A novel measure of fractional anisotropy based on the tensor distribution function.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):845-52. doi: 10.1007/978-3-642-04268-3_104.
9
Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):131-9. doi: 10.1007/11566465_17.
10
Anisotropy creases delineate white matter structure in diffusion tensor MRI.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):126-33. doi: 10.1007/11866565_16.

引用本文的文献

1
Local Tests for Identifying Anisotropic Diffusion Areas in Human Brain with DTI.
Ann Appl Stat. 2013 Mar;7(1):201-225. doi: 10.1214/12-aoas573.
2
Semiparametric Bayesian local functional models for diffusion tensor tract statistics.
Neuroimage. 2012 Oct 15;63(1):460-74. doi: 10.1016/j.neuroimage.2012.06.027. Epub 2012 Jun 23.
3
FADTTS: functional analysis of diffusion tensor tract statistics.
Neuroimage. 2011 Jun 1;56(3):1412-25. doi: 10.1016/j.neuroimage.2011.01.075. Epub 2011 Feb 16.
4
FRATS: Functional Regression Analysis of DTI Tract Statistics.
IEEE Trans Med Imaging. 2010 Apr;29(4):1039-49. doi: 10.1109/TMI.2010.2040625. Epub 2010 Mar 22.
5
Regression Models for Identifying Noise Sources in Magnetic Resonance Images.
J Am Stat Assoc. 2009 Jun 1;104(486):623-637. doi: 10.1198/jasa.2009.0029.
6
The ellipsoidal area ratio: an alternative anisotropy index for diffusion tensor imaging.
Magn Reson Imaging. 2009 Apr;27(3):311-23. doi: 10.1016/j.mri.2008.07.018. Epub 2008 Oct 2.

本文引用的文献

1
Quantitative analysis of diffusion tensor orientation: theoretical framework.
Magn Reson Med. 2004 Nov;52(5):1146-55. doi: 10.1002/mrm.20254.
2
Singularities in diffusion tensor fields and their relevance in white matter fiber tractography.
Neuroimage. 2004 Jun;22(2):481-91. doi: 10.1016/j.neuroimage.2004.02.001.
6
Parametric and non-parametric statistical analysis of DT-MRI data.
J Magn Reson. 2003 Mar;161(1):1-14. doi: 10.1016/s1090-7807(02)00178-7.
7
White matter tractography using diffusion tensor deflection.
Hum Brain Mapp. 2003 Apr;18(4):306-21. doi: 10.1002/hbm.10102.
9
Fiber tracking: principles and strategies - a technical review.
NMR Biomed. 2002 Nov-Dec;15(7-8):468-80. doi: 10.1002/nbm.781.
10
Virtual in vivo interactive dissection of white matter fasciculi in the human brain.
Neuroimage. 2002 Sep;17(1):77-94. doi: 10.1006/nimg.2002.1136.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验